
1

User’s Guide

Math Tablet
Scientific Computing for Windows Mobile

version 2.1Updated May 2, 2007

2Contents
Page

Overview

Getting Help

Entering and Editing Expressions

Expression Stack

RPN Entry

Variables

Matrices and Vectored Operations

Arbitrary Bases

Options Menu

Display Formats

User Functions

Graphing

Managing Workspaces

Documenting Your Work

Module Menu

Module Reference
Built-in
Scientific
Advanced
Hexadecimal
Statistical
Conversion
User
Scripting
Graphics
Formulas
TVM

Examples - Using Math Tablet to Solve a Variety of Problems
#1 Balancing a Check Book
#2 Simultaneous Equation Solution
#3 Solving a Nonlinear Boyancy Equation
#4 Numerical Integration, One and Two Dimensional
#5 Graphing the Path of a Projectile
#6 A Script to Find the First N Prime Numbers
#7 Plotting sin(x) - Three Different Ways
#8 Creating a Bode Plot (frequency response)

3

4

5

6

9

12

15

17

18

19

22

23

28

30

31

32
33
34
36
37
43
48
49
55
60
65

68
70
72
75
80
85
88
93

Math Tablet is the sole property of StatsNOW, G. Mason, Copyright 2002
Math Tablet cannot be sold or distributed without permission

Email: support @statsnow.net Web: www.statsnow.net

Click on underlined text to jump to that section

Additional scripts can be downloaded at www.statsnow.net

mailto:support@statsnow.net
http://www.statsnow.net/mathtablet

3

Expression stack

List of installed modules
and the Module Menu

Module keypad. This
changes with the
plug-in modules

An expression is evaluated when EXE is pressed.
(It’s just like the = key on a calculator)

The currently active
expression is in white

Switches between the
graph and stack display

Options Menu

Variables, symbols
and user scripts

Indicates matrix
support
Indicates complex
number support

Expression result is in
bold text

Recalls the results of the last
computation

Overview
Math Tablet is a programmable scientific analysis package for the PocketPC. It is simple enough
to use to balance your checkbook, yet powerful enough to solve your tough numerical problems.

Key features of Math Tablet include:
Algebraic and RPN entry modes
Matrix and complex number support
Hundreds of scientific and statistical functions
Arbitrary bases
Numerical integrations and differentiation
Differential equation solvers
Polynomial and nonlinear equation solvers
User variables, constants, functions and formulas
Unit conversion and computations using mixed units
User defined keyboard layouts
Statistical tests with multiple data sets
Graphing of multiple functions
Results displayed as decimal, hexadecimal or fractions
Import and exporting of data to comma separated data files
Vectored operations on data
A scripting language for creating custom features
Plug-in support for adding new features to Math Tablet

Math Tablet’s screen is divided into two sections. The upper section shows the expression
stack or graph. The lower section shows the keypad for entering expressions.

Indicates support for
vectored operations

Math Tablet features built in graphing capabilities and a unique expression stack, which keeps
track of your calculations and lets you easily modify or correct your work. Math Tablet includes
hundreds of scientific functions including matrix operations, complex numbers and hexadecimal
calculations. In addition, Math Tablet’s features can be extended by using its built in scripting
language or through 3rd party plug-in modules.

4Getting Help
Math Tablet provides four options for obtaining help. These options are described below. The
help options are arranged in order from the most convenient to the most complete.

Workspace Help
You can access information about a workspace by selecting the
Workspace Info... option from the Options menu. This information is
provided by the user or creator of a user script to document the
workspace.

You can also view this information by selecting the “?” from the
Variable and Function popup.

On Screen Popup Help
Most Math Tablet functions support popup help. To see the popup
help for a particular function, tap and hold the pen on the key for that
function. Use popup help when you can’ t remember the parameter
for a function, or you forgot the details for using that function. Tap on
the popup to cancel the help message, or tap on any key to cancel
the help message and continue using Math Tablet. Popup help also
works with user defined key created with the User module.

On Line Help
You can view more detailed help on Math Tablet by selecting Help from the Start menu. Math
Tablet includes on line help for all of its modules. You can add help files by placing a HTM file
inside of Math Tablet’s program folder. When you restart Math Tablet it will automatically add
the new help to its table of contents.

User’s Guide
If you still need to learn more about Math Tablet you should consult this manual.

Tap on the ? to get help
for a particular script

5

Expressions, or mathematical formulas, are entered onto the expression stack using using the
keypad on the half bottom of the screen, or by using one of the built-in entry methods on your
handheld - such as handwriting recognition. You can enter your expressions using either an
Algebraic entry method or using Reverse Polish Notation (RPN). Both Algebraic and RPN entry
methods utilize the expression stack in a similar manner. If you plan on using RPN, you should
read this section to familiarize yourself with how the expression stack works, then read about RPN.

Entering and Editing Expressions

Math Tablet evaluates expressions based on common operator hierarchy. It performs multipli-
cation and division first, then addition and subtraction. Math Tablet assumes that variables or
values written together without an operator should be multiplied. If two or more variables are
written together, Math Tablet will multiply them only if they are all single letter variables. See the
examples below. These examples assume that the variables x,y,s,e,n and data are all defined.

3x+5 is evaluated as (3*x) + 5
10sin(4pi + 5) is evaluated as 10*sin((4*pi)+5)
(10.2)(23.1) is evaluated as 10.2*23.1
1/3 + 2xy is evaluated as (1/3) + (2*x*y)
sen(10+pi) is evaluated as s*e*n*(10+pi)
12data is evaluated as 12*data
12sdata can not be evaluated because two variables must be multiplied and “data” is not a single
letter variable

Remember! You enter your expression using Algebraic entry as you would write it on
paper. To evaluate sin(3) you tap “sin” then “3” to create the expression “sin(3)”. To
evaluate this expression tap EXE. This is opposite of many calculators in which you would
enter “3” and then tap “sin”.

Once a block is active, enter and edit the expression using the keypad, arrow, and BS (backspace)
keys. When the expression is complete, press the EXE(execute) key on the bottom right of the
keypad, the RETURN key on the handheld’s keyboard, or tap on another block. This enters the
expression into the block and evaluates it. The result of the expression is shown in bold text

Hint: Press the Up arrow on your handheld’s navigation pad to see
the standard keyboard

Expressions are entered into the active block. The active expression block is colored white. To
activate a block, tap on the block near where the expression text is located. If the block is blank,
tap anywhere in the block.

Active expression block

Backspace to correct an
error. Tap and Hold the BS
key to clear the entire line.

Evaluates the expression

beneath the expression. If the active
block is the last block in the
expression stack, a new block is
automatically added and selected as
the active block. Expressions are not
saved until you press EXE or tap on
another block. If you make a mistake,
press the undo button, , and the
previous value in the active block will
be restored.

Undo the last operation on
the active expression

6Expression Stack

The expression stack makes it easy to keep track of your work, to repeat steps in your calcula-
tions and to edit and correct your work. The expression stack is a list of expression blocks. The
oldest blocks are at the top of the screen, the newer blocks are below them. Math Tablet
remembers your last 100 expressions. When you edit an expression, Math Tablet automatically
re-evaluates all of the expression blocks below the one you re-evaluated. Thus, you can use
the expression stack to set up a problem and then vary the parameters of the problem and easi-
ly recompute the answers. Math Tablet also leaves the edited equation active so that you can
easily change its value again and recompute the results by pressing EXE. Below is an example
illustrating the expression stack.

Next the “t” expression was edited. “t” was changed from
10.2 to 14.1. As soon as EXE is tapped, all expressions
below the “t” expression were re-evaluate. The updated
stack is shown on the right.

The following expressions
were entered into Math Tablet

Math Tablet also contains powerful scripting capabilities which let you control the order in
which expression in a workspace are evaluated and lets you create your own functions.
See the Scripting Module.

7Expression Stack Features

The expression stack features and short-cuts make it easy to enter, modify and view your
expressions. These features are identified in the figure below.

Tap on the R or D to switch
between Degrees and Radians

Tap here to enable/disable graph-
ing of an expression. When you
tap this spot, the plot box will
appear

Tap and hold on an expression
block to see the Expression Menu

Tap on the equation to edit the equation and
make that expression active

Tap on matrix answers to see the
entire matrix in a matrix viewer

!
1/0

If an error occurs, the expression will
be marked with a “!”. Tap on the “!”
to see an expanded error message

Labels identify important
blocks. See the Expression
Menu

Tap in the area to the left of the answer to paste the
ANS function corresponding to that expression into the
currently active expression. If the expression was
assigned to a variable, the variable will be pasted in the
the active expression. Use this feature in combination
with the Auto Assign feature to create calculations that
build on each other. See the Options Menu.

Matrix answers include the size of
the matrix. A “..” below the size
means that not all of the matrix
could be shown.

!

Cosine
R

R

Indicates a locked expression.
See the Expression Properties.

Plot this expression using the
selected color

Don’t plot this expression

Clear the plot selection on all
expressions

8

Disables graphing of all expressions

Opens up the Expression Properties dialog (see below)

Edit the expression’s label. Use
labels to identify key steps in your
calculations. This makes it easier to
modify your calculations when you
come back to them later.

Locks an expression. Locked expres-
sion will not be automatically updated if
the stack changes. You can update a
locked expression by making it the
active expression and pressing EXE.

Deletes the expressions from the stack

Adds a blank expression before the
selected expression

Converts the expression into a user function and opens up
the User Function dialog

Use to copy and paste from one block to another. To copy text from
an expression, first select the text then tap and hold in the block but
away from the text. The menu will display “Copy Text”. To copy and
entire expression, tap and hold without selecting any text.

Hides all expressions without a label or
Shows all expressions.

To view the Expression Menu, tap and hold the pen in an expression block.

To view the Expression Properties, select Properties... from the Expression Menu

Expression Menu & Properties

Math Tablet remembers your last 100
expressions. You can also save your
work so you can edit or review it later.

Copies the answer from the selected expression to the clipboard.
You can then paste the answer to other applications

Executes the workspace as a script (see the Scripting Module)

Exports the answer to a comma separated (CSV) data file which
can be opened in a text editor or in many spreadsheet applications

Format overrides. Use to display
the answer in specific format.
See Format Overrides

9RPN Entry
Math Tablet lets you enter expressions using either an Algebraic entry method, or Reverse Polish
Notation (RPN). To switch to RPN mode, select RPN Mode from the Options menu. When in
RPN mode, the keypad background changes from blue to green as shown below. RPN can only
be used when you are entering values on the last equation block on the stack. If you make
another block active, Math Tablet will temporarily return to Algebraic mode. You can tell what
mode you are in by the color of the keypad.

The following section highlights the unique features of Math Tablet’s RPN mode and assumes
that you are already familiar with the RPN entry method. Remember, RPN is optional, if you are
not comfortable using RPN you may want to skip this section.

RPN Keypad with green background

Sets the sign of a value
Temporarily disables RPN mode. RPN mode is auto-
matically re-enabled if you press the EXE key, or acti-
vate another expression block and then reactive the
last expression block in the stack

Exchange the last two entries on the stack
Enter or duplicate a value on the stack

Math Tablet uses an expression based RPN entry method. You enter an expression as you
would using “normal” RPN, however, as you enter your expression Math Tablet generates the
equivalent Algebraic expression and displays it in the stack. This lets you review and edit the
steps you used in your computations.

As you enter expressions Math Tablet automatically grows the stack downward. For this reason
RPN expressions must always be entered from the last expression on the stack.

Stack contents:

Keys entered:
9 Ent 6 + 7 Ent 3 - *

The following example shows how the expression stack changes as the equation (9+6)*(7-3) is
entered.

Entering Expressions:

Undoes the last RPN operation. Only one level of
Undo is supported.

10RPN Entry
Editing the stack contents:
Since Math Tablet uses an expression based RPN stack, you can edit the RPN stack contents at
any time.

1) Tap on the incorrect expression to make it the active expression. Math Tablet will
temporarily enter Algebraic mode.

2) Edit the expression. You can edit operators and values.
3) Press EXE to evaluate the new expression
4) Tap on the last expression block in the stack to make it active. Math Tablet will automatically

return to RPN mode.

Entering Function Parameters:
Functions requiring only one parameter, such as “sin”, are entered as done normally in RPN.
sin(10.2) is entered as 10.2 sin, note that 10.2 Ent sin produces the same result, but is less
efficient.

Functions requiring two parameters, such as “polar”, (P(x,y) on the scientific keypad), can be
entered two different ways. To enter: polar(5,6)

Method one: 5 Ent 6 polar (polar is P(x,y) on the scientific keypad). 5 Ent 6 Ent polar is
the same, but is less efficient.

Method two: 5 Ent 6 , polar This method uses the “,” operator to create an expression 5,6
then evaluates that expression using the polar function

Functions requiring more than two parameters, or functions with optional parameters must be
entered using the second method. That is, you must build up the parameter list using the comma
operator and then evaluate the function. Alternately, you can disable RPN mode using the key
and enter the function in Algebraic mode. RPN mode will resume as soon as you press EXE.

Undoing an operation:
Use the key to undo the last RPN operation and return the stack to its previous state. Only
one level of undo is supported.

Assigning and Recalling Variables:
To assign a value to a variable use the “=” operator. The “=” operator reverses the order of the
entries so that you enter the value first, then the variable you wish to assign it to. For example to
enter the expression a = 12+6, enter: 12 Ent 6 + a =

To assign or recall an element from a matrix variable, use the [] as normal. When you press the
[] key, Math Tablet temporarily enters Algebraic mode so that you can enter the parameter
inside of the []. Press Exe to enter the expression and resume RPN mode.

Using the ANS Function:
You can use the ANS(n) function to use previous stack values in an expression. See
Expression Stack Features for information on recalling values from expression blocks. Math
Tablet will automatically adjust the parameter “n” when it “pops” the stack. However, Math
Tablet can not evaluate the ANS function if n<1, instead it will replace ANS with the actual value
from the stack.

11

Changing Sign:
The key is used to change the sign of a value. The key functions differently depending on
the state of the stack.
1) If the active block is empty, changes the sign of the previous expression block
2) If the active block holds a value that does not use scientific notation, changes the sign of

the value
3) If the active block holds a value in scientific notation (E), changes the sign of the exponent.

For example, to enter -1.2E-6 use: 1.2 -/+ E -/+ 6 Ent where -/+ is the key.

RPN Entry
Using Matrices:
To enter a matrix, you need to enter the elements on the matrix first using the “,” and “ |”
operators. Then enter “{}” to enter the values into a matrix.

To create the matrix

You would enter 1 Ent 2 , 3 | 4 , { } (the | and { } keys are located on the Advanced keypad)

An alternate method is to temporarily disable RPN mode by pressing the key. Then enter
the matrix using Algebraic mode. When you press EXE, RPN mode will automatically resume.

1 2
3 4

Vectored Expressions:
To enable an expression for vectored operations press the key (in the Advanced module)
after entering the expression. The “V:” operator will be placed at the beginning of the
expression.

Using the Complex Numbers:
You can enter complex constants two ways. For example, to enter 3+4i use:
1) 3 Ent 4 i +
2) 3 Ent 4 Ent i * +

Stack Management:
Math Tablet’s stack is slightly different than a traditional RPN calculator stack. First, the stack
size is not fixed, but grows and shrinks as you make calculations. Second, you can edit or
recall any value on the stack. Thus, Math Tablet does not need stack functions such as roll-up
or roll-down. Below are some common calculator RPN stack operations and instructions on
how to accomplish a similar function in Math Tablet.
1) Roll-Down: Tap and Hold on the expression you want at the bottom of the stack and select,

Delete All Below from the pop-up menu.
2) Roll-Up: Instead of changing the stack, simply tap on the expression you wish to use. This

will enter the ANS() function onto the stack and let you use the value stored in that location
in the stack. This method also preserves all of your prior work.

3) Exchange X & Y: Use the key.
4) Duplicate X entry: Press Ent when the last block is active and empty

Entering Strings:
To enter a string value, press the “ ”, double quotes key. This temporarily disables RPN mode
so that you can enter the string value. RPN mode is resumed when you press Exe.

12

common variables

tap here to see all available
variables and functions

Tapping on the symbol brings up the variable and function dialog box shown below. This box
has two views. Tapping on the Variables or Scripts button at the bottom of the box switches
between the two views. Variable are discussed on the following pages. Scripts are workspaces
that can be run as a user program and are developed using the Scripting module.

Recalling Variables and Scripts

You can enter the variables using the symbol bar shown below.

use the = to assign variables to a value in
an expression or use the variable editor

The variable view list variables which have been assigned a value first, followed by user
defined functions and then unassign variables. Scripts are listed in alphabetical order.

shows scripts
shows variables
and functions

shows all scripts in the Script
Directory which conform to the
script naming convention

tap here to enter the variable into
the expression stack

tap here to view the
variable’s contents

tap here to see the
workspace’s info or help
file. Tap on the help text
to enter the script into the
workspace. Tap on Vari-
able or Script below to
return to the variable or
script view

tap here to enter
the script into the
expression stack

tap here to create a new variable.
See Variables

13Creating Variables
Math Tablet lets you create up to 100 variables per workspace. Variable can have any name
with the following restrictions.

Scalar - a single complex value
Matrix - a matrix of complex values. The matrix can hold up to 64,000 values.
String - a string of characters, such as "Hello".

“i” is reserved for sqrt(-1).
You can not use any existing built in function names
Variable names must can not contain numbers or symbols
Variable names are limited to 11 characters

A variable can hold any of the following type of data

To create a variable:

1) equate a variable name to a value using “=”. The expression, data = 13+7. will automatically
create a variable named “data” if it doesn’t already exist.

or

2) select NEW from the Variable and Function popup. This opens up the variable creation
dialog shown below. Enter the name of the variable and press OK.

To delete all unused variable select Delete Variables from the Workspace sub menu.

enter the variable name here

a list of common variable names
you might want to use

edit the list of common variable names to
match your preferences

Lines beginning with non-characters are com-
ment lines. You can add comments to your
Common Names list to separate out different
types of names.

opens the variable creation dialog

Press the Up arrow on your handheld’s navigation pad to see the standard keyboard. Use
this in combination with the first variable creation method above to name your variables.

14Variable Editor

You assign values to variables using the “=” in an expression as discussed in the previous
section, or by using the variable editor shown below. The variable editor is accessed through
the Options Menu .

Select the variable you want to
edit from this list

The variable type is listed here. Unused variables
are shown as “empty”. You can change this value to
change the variable type

Sets the number of rows and col-
umns for a matrix variable

The value of the variable is
shown here

To change the value of a variable or
matrix element, type in any valid sca-
lar expression and press Set

To select a different matrix ele-
ment, tap on the desired element.
The selected element in a matrix
will be highlighted

Currently selected row
and column

Use to import data from a text file into a variable. The text
file must be formatted so the rows of the matrix are separat-
ed by a carriage return (return key) and columns of the
matrix are separated by a comma, a tab or other
nonnumeric character. A CSV (comma separated values)
file is an example of a valid file. Import can only import real
values.

Import is useful for transferring spread sheet data from a
desktop PC to your handheld. Simply export the spread
sheet data as a CSV file, transfer CSV file to your handheld
and import the data into a variable.

Quick keyboard for entering values.
Use the TAB key to enter a value and
move to the next element in an array.
Press to see the standard
PocketPC keyboard

15Matrices and Vectored Operations
Matrices
Math Tablet supports real and complex matrices.

Creating a Matrix:
You create a matrix by enclosing the row and column values in braces {}. Separate columns by
commas and rows by a vertical line, |. (The mat command, available in older versions of Math
Tablet, is also support.) Nested braces are not supported.

a = {1,2,3|4,5,6} creates the matrix

Assigning Individual Values:
You can assign values to individual element, rows or columns, in a matrix variable by using the
brackets [] and specifying the row, column. Use a “:” or a number less than 1 to assign entire
rows or columns. Use “m:n” to assign a range of columns or rows, from m to n.

a[2,1]=9 assigns the element in row 2, column 1 to the value 9
a[1,:] = a[2,:] assigns the values in row one of “a” to be the values in row 2 of “a”
a[2,2:3] = {9,10} assigns the values 9 and 10 to columns 2 through 3 of row 2 of “a”
b = a assigns the entire matrix stored in “a” to the variable “b”

The index values with in [] may be variables or expressions, but must be scalars.

1 2 3
4 5 6

Recalling Individual Values:
You can recall individual element, rows or columns, in a matrix variable by using the brackets []
and specifying the row and column. If you wish to recall an entire row or column replace the
number with a “:” or a number less than 1. Use “m:n” to recall a range of columns or rows, from
m to n

If a = {1,2,3|4,5,6} then
a[1,2] recalls the value, 2, from the first row and second column
a[4] recalls the fourth element, 4. Elements are numbered by rows

a[:,1:2] recalls columns 1 through 2 of every row. The result is

a[:,1] recalls the first column . Alternately you could write a[0,1]

You can recall elements from any matrix expression, not just variables. For example:

inv(a)[1,:] recalls the first row from the matrix resulting from inv(a)
(a + 2a)[2,2] recalls the element from the second row, second column of the matrix (a+ 2a)

When recalling matrix values from expressions, the [] has the same precedence as
multiplication and division.

Strings
To save a string to a variable, place quotes around the text. For example a = “sin(x)”. Matrix
strings are not supported. You can also use the [] notation to recall or set individual characters,
or groups of characters in a string.

1
4

1 2
4 5

16

Vectored Operations
Vectored operations let you perform operations on a matrix as if the matrix were a list of data.
Vectored operations are all scalar operations which act independently on each element of a
matrix. Vectored operation are useful for analyzing data sets, or for generating data for plotting.

In general, any scalar operator can act on a matrix by specifying that the expression block is to
be evaluated using vectored operations. You specify vectored operations by preceding the
expression with a “V:” (the key). Operations which support vectored use are marked on the
keypad with a

Following are two examples comparing matrix and vectored operations

1 2
3 4

1 2
3 4

7 10
6 22

1 2
3 4

1 2
3 4

1 4
9 16

Matrix Vectored

= =

1 2
3 4

sin() result not defined
in Math Tablet

0.8415 0.909
0.1411 -0.757

=

Math Tablet lets you mix matrices with scalars when doing vectored operations.

To see how vectored operations can be used to solve a problem, see Examples #7 and
Example #8 at the end of this document.

Matrices and Vectored Operations

{1,2|3,4}{1,2|3,4} V: {1,2|3,4}{1,2|3,4}

V: sin({1,2|3,4})

Expression:

Math Tablet Command:

Expression:

Math Tablet Command:

1 2
3 4

sin()

17Arbitrary Bases

Math Tablet lets you enter and display values in an arbitrary base.

Entering Values
To enter a value in an arbitrary base precede the value with 0bx where “b” is the base. If the
base is greater than 10 use the letters A-Z for successive digits. For example:

110011 base 2 is entered as 02x110011

A231 base 12 is entered as 012xA231

FF23B base 16 is entered as 016xFF23B

Base 16 (hexadecimal) values can be entered without the base value. 016xFF23 and 0xFF23
are equivalent.

Values from different bases may be mixed in a single expression.

Displaying Values
Values are displayed in the currently specified format. Using the Base format setting you can
specify the base in which all expressions, or specific expressions, are displayed. Math Tablet
displays only unsigned integers when values are displayed in a base, other than base 10.

For details on changing the display format, see Format Overrides and Display Formats

18

Automatically begins each express with ANS, which recalls the results of
the previous expression. Use this mode to chain expressions.

Opens the variable editor or function editor dialogs

Use to manage your workspaces

Shows or hides the numeric and module keypads, and shows or hides
the built in keyboard. Pressing the Up navigation button (cursor pad)
on the front of your handheld will also show or hide the keypad

Options Menu
You access the Options Menu by tapping on the key

The items on the Options Menu are described below.

Math Tablet will automatically start each expression with a variable
assignment “a=“, where “a” will change with each new expression. The
first expression will be “a=”, the next will be “b=” and so on up to “h=”.
The assignments will then restart with “a=”. Tapping just below the
variable assignment will recall that variable into the active expression.

Uncheck this to keep Math Tablet from automatically updating the
expression stack. This is useful when developing scripts.

Use to change how Math Tablet displays results.
See Display Formats

You can use CTRL Q from the keyboard to quit Math Tablet

Tap on “Wksp”, “Set 1”, or “Set 2” to quickly switch to a
different format. The currently used format is shown in “[]”

Enable/Disable RPN entry mode. See RPN Entry

19

Math Tablet lets you view your work in several different formats. Use the Format... dialog on
the Options menu to change this format.

Math Tablet lets you set up three different format configurations that you can easily switch
between using the dialog box below or the Options Menu Custom format setting are useful, if
for example, you perform a lot of complex math and regularly need to switch between
rectangular and polar form. You can set up a format set for each format and quickly switch
between the them using the Options Menu. There are three format sets.

Display Options

Format
Determines the layout or format to use when displaying numbers

Fixed Point displays values using the specified number of values to the right of the decimal.
Very large, or very small values are displayed in scientific notation, using the specified number
of digits.

Floating Point displays values using either scientific notation or fix point depending on the
magnitude of the number. Floating Point automatically chooses the most efficient format.

select how the values are formatted

select the number of significant digits displayed

internally round calculations to 12 digits. This can
help to minimize zero values occuring a very small
values. Once enabled, you will need to reevaluate
expression on the stack.
Warning: Do not enable this option if you need
maximum precision in your calculations.

displays complex numbers in polar form, otherwise
rectangular form is used

increase the font size used for the expression stack
and some dialog boxes

Sets the number of values that will show in an expression block
when the answer is a matrix. If there are more values than can be
shown a “..” is placed in the expression block. You can see all the
values by tapping on the answer in the expression block. “Scripting”
hides the expression block answer and is useful when writing scripts
in Math Tablet.

Shows answers in a two column format when possible. Available
only in “Floating” format

Workspace: This format setting is associated with the current workspace and will be save
and loaded as you save and load the workspace. Every workspace can have its own
Workspace format.

Set 1 and Set 2: These format settings are perminent settings that do not change when you
load workspaces. These are save when you quit MathTablet and loaded when you run
Math Tablet.

Use to select bewteen different
configurations you have set up.
To use a setting, select that
setting and press OK. You can
also quickly switch between
settings using the Options Menu

The Format dialog is explained below.

20Display Options (continued)

Precision
Determines the number of digits to show

Auto displays a variable number of digits. Values are displayed with up to eight significant digits.
Trailing zeros are never shown.

2-14 displays a value with a fixed number of digits. Trailing zeros may be present. Math Tablet
may automatically reduce the precision of complex values if they can not fix in the display area.

Fractional values (available only with the Fraction format) This value specifies the largest value
of the denominator. Values are rounded to the nearest multiple of this value.

Truncate Small Zeros
Rounds values with a magnitude less than 10-14 to zero. The rounded value will be shown as +0
or -0 to indicate the rounding direction. This is useful if you are not concerned with very small
values which may have resulted from internal roundoff. Available only under the “Floating” format.

Complex Values - Polar Form
You can view complex values using a polar format by selecting “Use Polar Form” . The polar
form displays the magnitude and angle from the positive real axis, such as 7.0711@45°. The
units for the angle corresponds to the angle setting for the expression block. Changing the angle
setting will update the expression’s output. If you regularly use polar form, you should also refer to
the “@” operator in the Scientific module, which lets you enter complex values directly in polar
form.

When Polar Form is selected, complex values shown in the Variable editor or popup always use a
unit of radians.

When Polar Form is not selected complex values are displayed in rectangular coordinates, such
as 5+5i

Scientific Notation displays values always using scientific notation with one digit to the left of
the decimal point

Engineering Notation displays values using scientific notation where the exponent is always a
multiple of three

Fractions displays values as fractions. These may be approximations of the actual decimal
value. The maximum value for the denominator is determined by the Precision setting.

Hexadecimal displays values as an unsigned 32 bit value in base 16. Decimal numbers are
rounded to the nearest whole number.

Base displays values as an unsigned 32 bit value in an arbitrary base. Values are preceded
with a 0x (base 16) or a 0bx, where b is the base of the value. The Precision setting is used to
specify the desired base. Decimal numbers are rounded to the nearest whole number.

Math Tablet always retains answers internally to full machine precision (approximately 15
digits) even if the displayed value has been rounded.

21

Format Overrides

Math Tablet nominally applies the format setting specified by the user to all expressions (see
Display Options). Format overrides let you specify different formats for each expression. This is
especially useful if you often work between base 10 and base 16. With a format override you can
quickly switch between the two bases.

There are five format overrides. They are indicated by the following icons on the screen.

Hexadecimal format

Floating point format showing 16 digits

Fractional form format

Use the format specified in the format Set 1 (see Display Options).

Use the format specified in the format Set 2 (see Display Options).

When an expression is using a format override, one of
these icons appears on the far right of the expression as
shown.

The format override can be set using the expression
properties box, or through the updated Hex modules.

Using the expression property box , select one of the
format override buttons to set the expression override.

The format override can also be set using the Hex module. The updated hex
module includes buttons for setting the formats.

Use the hex module’s format overrides to perform quick base conversions.

1) enter an expression in base 10
2) tap on the H (hex) format override

Format override buttons

Use Format Overrides to perform base conversion. Set one of the custom format sets to the
desired base. The use format override to force the output to be displayed in that base.

22User Functions

Math Tablet lets you create up to 30 single line functions. More complex functions can be
created using Math Tablet’s scripting language. To create a single line function either enter the
desired function on the expression stack and select “Make Function” from the Expression Menu
or select the Function Manager from the Options Menu .

Functions must take one of four forms. Select the form, based on how many parameters your
function requires:

Constant
f(x)
f(x,y)
f(x,y,z)

Before a function is evaluated, the values of x,y and z in the function expression are assigned
the values passed to the function. The function is then evaluated. The resulting value is
returned to the expression calling the function.

Function names are limited to 20 characters and can not contain any symbols or numbers.

The Function Manager is shown below.

Shows all available functions

Edit the function name here

Edit the function expression here

Select the type of function from this list

You must save any changes you make to a function

User functions are saved as part of the current workspace. If you clear the workspace, or
quit Math Tablet without saving the workspace you will loose your function definitions. If you
save your user functions into the Startup workspace then the functions will be loaded
whenever you Reset the workspace. See the Managing Workspaces section for more
information.

You can create more complex functions using Math Tablet’s scripting language. Script
functions are saved independent of the current workspace.

In general, User Functions execute faster than scripts, however User Functions are limited
to one line and are only available in workspaces in which they have been explicitly loaded.

23Graphing

Math Tablet can graph up to 20 different expressions simultaneously. To enable graphing, tap on the
area below the R or D on the right side of the expression box after you have evaluated the expression
by pressing Exe. See the Expression Stack Features .

Math Tablet can graph expressions that are a function of “x”, explicit expression that are a function of
both “x” and “y”, expressions in polar coordinates, and parametric equations. See the following table for
details.

Function Type

y=f(x)

Enter this on the
expression stack

y=sin(x)

Example

f(x) sin(x)

To plot this Enter this

f(x,y)=0 x2+y2=9f(x,y) x2+y2 - 9

r=f(theta) r=3*thetaf(theta) 3*t

re
ct

an
gu

la
r

f(r, theta)=0 sin(8*theta)+3r=9f(r, theta) sin(8*t)+3r - 9

where 0<theta<360 To change this range, change the polar rotation value in the graph setting.

x=f(u), y=g(u) x=sin(360u), y=cos(360u)
f(u) sin(360u)

cos(360u)g(u)

Note: f(u) and g(u) must be entered on successive expressions on the
stack. Only the f(u) expression should be marked for graphing.

where 0<u<1

po
la

r
pa

ra
m

et
ric

The graph is automatically updated when ever you make a change to the expression stack.

When you switch to the graphing view, Math Tablet will automatically graph the last 20 expressions
that are marked for graphing with a (). See the Expression Stack Features .

24Graphing

Tap on the arrows to scroll the graph. Math
Table may have to recalculate the graph
values when you scroll in the x direction. Y
values are stored with the current graph so
scrolling or scaling the y axis can be per-
formed quickly.

Tap to toggle between the graphing
view and the expression stack view.

To zoom in, drag the pen to
draw a box around the
desired area

Tap and hold the pen
on the graph to see
the Graphing Menu Tap on the graph to bring up the "trace"

box (see the following page) and show the
traced location with a grey line.

To view the graphs tap on the graph button (). Graphs can be viewed in half screen or full
screen mode. Half screen mode lets you edit expressions while viewing the graph. Full screen
provides many of the commonly used graph features as buttons and does not require a tap and
hold to access them. To switch between the two modes press the zoom () button on the graph.

Tap to enable full screen
graphing Half Screen Mode

Full Screen Mode
Tap to enable half screen
graphing

Common graphing functions. You can also
use a tap and hold on the graph to access
these functions See the Graphing Menu

Previous Scaling

Scale Y only
Scale all

Zoom in
Zoom out

Default Axis
Grids

Settings

25Graphing

The trace box displays the actual y value for each curve intersecting the vertical trace line. If a
curve intersects the vertical trace line more than once, the value for curve value closest to the
horizontal trace line is used. When the polar grid is shown, trace value are displayed in polar
coordinates using degrees

In addition the traced value may include a symbol to explain the how the value was obtained.
Those are explained below:

(I) The curve was drawn by connecting a straight line between discrete data points (see the
“plot” command in the Graphing Module). The value displayed was found by interpolating the
y value at the current traced x value

(--) The curve does not intersect the vertical trace line.

(blank) The value displayed corresponds to the exact y data value for that curve. This y value cor-
responds to the x value shown at the top of the trace box. If a data point for the curve is
close to the trace line, but not exactly under it, the trace box shows both the x and y value
for that point. This can occur when data points are drawn using the plot or polar
commands from the Graphing Module and the data point falls between two adjacent
pixels on the display. Remember that the display has a limited resolution, so the trace
line can not physical land on every possible data point at a given zoom level. Math Tablet
takes care of the problem by giving you the exact x,y coordinate.

Trace Box

Increment/Decrement the
x,y location of the trace line

You can copy a value from the trace window to the active expression by tapping on the
value in the Trace Box when in half screen mode. Use this, in conjunction with the
“plot” command and line option (“-”), to get interpolated values from your data.

The Label for that
expression block

To view the trace box, tap on the graph. This brings up the trace box and places cross hairs at
the tapped location. The trace box lets you see the actual value of any data point on the graph.

(*) The curved was generated with an implicit plot, such as y2+x2-9. Math Tablet had to solve
an equation using a numerical approximation method in order to complete the requested
plot. Values marked with a “*” are accurate to 1/10 the current zoom level.

26Graphing Menu

To view the Graphing Menu, tap and hold the pen on the graph, or select one of the buttons at
the bottom of the full screen graph.

Zooms the graph in and out. You can also draw a box
around a desired area to zoom the graph in. Math Tablet
may need to recompute graph values if you zoom in or out.

Sets the x and y scaling so that all of the graph can be seen.

Opens the Settings dialog shown below

Recomputes and redraws the graphs

Resets the axis limits to the default values and redraws the
graphs.

The graphing limits

Changes the default limits. These
are the values which are recalled
when “Default Axis” is selected from
the Graphing Menu

Makes the x and y axis scaling uni-
form. When the scaling is uniform,
circles look like circles and not ovalsChanges the thickness of the

pen used to draw the graph. If
you want the setting to be per-
manent, change the settings
and save the workspace as the
“startup workspace”

Automatically scales the graph
so all the data is visible

Opens the Grids dialog described on the next page

Sets the y scaling so that all of the graph can be seen.

Restores the previous x and y scaling

Change the grid
and default axis
settings

Undo zoom
Autoscale y or
x and y

Zoom in and out

Use Default Axis

When in full screen graphing mode, you can also select one of the following button from the bottom of the
screen

The default axis settings dialog is shown below

Sets the number of revolutions for
which polar plots will be graphed.
This set the range of “t” in polar
graphs.

27Graphing Menu

No grid is shown

Use the grids dialog shown below to set the background grid for the graph.

Math Tablet automatically
chooses a grid size for the
graph. The grid may change
as you zoom in or out.

The grid spacing is specified
by the user. If the grid spac-
ing is so tight that the
handheld’s screen can not
resolve the grid, the grid will
not be shown.

Show a polar grid

Makes the x and y axis scaling uni-
form. When the scaling is uniform,
circles look like circles and not ovals

Math Tablet displays the current grid spacing values on bottom half of the graph.

User specified grid spacing

Math Tablet includes a Graph Module and Scripting Module which lets you perform
more advanced graphing.

28Managing Workspaces
Math Tablet lets you organize your work in workspaces. A workspace contains all the expres-
sions you have entered on the expression stack, your variables, your user defined functions and
settings. Math Tablet has three different types of workspaces.

Start-Up Workspace
This is the workspace you see when you first run Math Tablet, or when you “Reset
Workspace” the workspace, using the Options Menu . Use this workspace to store user
defined functions, variable values you commonly use and preferred format settings.

Default Workspace
This workspace is saved automatically when you quit Math Tablet and automatically reloaded
when you resume Math Tablet. The Default workspace can also be used as temporary stor-
age. For example, if you wanted to perform some calculation on the side and then resume
your original work, you could use the Save Default Workspace before you started your side
calculation and the Load Default Workspace when you were done.

User Workspace
These are workspaces that you save and load at any time.

When you load a workspace you will automatically be prompted with the dialog box shown
below. This allows you to load in all, or just part of the workspace. Math Tablet updates your
current workspace with the new part you loaded in, retaining the other parts of your current
workspace.

Select which components of
the workspace you wish to
load

Disables the automatic expression
updating (Auto Update). Select this if
you are loading a workspace script in
order to edit it, and do not want Math
Tablet to automatically update the
expression stack after the workspace is
loaded. You can enable Auto Update
at any time using the Options Menu.

IMPORTANT! To bypass the Start-Up and Default workspace, tap and hold the pen on the
screen while Math Tablet is loading.

29Managing Workspaces(continued)

To manage your workspaces, use the Options menu and the Workspace submenu shown
below.

Saves the current workspace as the Start-Up workspace.

Loads and saves workspaces. When you load a workspace you will
be asked which components of the workspace you wish to load. You
can also disable automatic updating of expression when you load a
workspace. See Auto Update,

Clears Equations on the Expression stack, or Scripts which have
been compiled by Math Tablet,

Clears all of the workspace except for your user defined func-
tions. These you must delete using the Function Manager .

Loads or saves the default workspace. This workspace is also
saved when you quit Math Tablet.

Releases temporary memory used in computations

Saves the current workspace as a text file which can be open in Word, or
transferred to a desktop PC and printed

Sets the Script Directory. All script functions (workspaces) must be stored in the Script
Directory You must have one workspace stored in a directory before you can set it as
the Script Directory.

Displays the workspace menu shown below

“Save” changes to “Save name” where name is the name of the last
loaded or saved workspace. Use this after you made a change to a
workspace.

Reloads the Start-Up workspace. If you have not saved a Start-
Up workspace, this clears the current workspace.

Show or edit comments for the workspace

Deletes any unused variables and clears all other variables. The
variables x,y,z,t are always defined

30Documenting Your Work

Math Tablet provides several ways for you to document your work. This is important if you plan
on reusing your workspaces or scripts at a later date.

Labels
You can add short Labels to any expression by choosing Properties from the Expression Popup
menu. Labels are usefuls for indicating units or for documenting some simple aspect of the
expression. Labels are limited to 30 characters and are also displayed on the trace when the
expression is graphed.

Comment Lines
You can delegate an entire expression block for documentation by making the first character of
the expression the “*” character. When this is done Math Tablet makes the block only one line
high and indicates that the line is not active with a special error message. This method is simi-
lar to using comments in a program. Comment lines are limited to 100 characters.

Workspace Info.
You can provide more detailed documentation for each workspace using the Workspace Info.
dialog, shown below, from the Options Menu. Workspace Info. is limited to 500 characters.
This information is also displayed if the user accesses the popup help for a key which has been
assigned to a user script or workspace, or if a user selects the “?” from the Variable and Func-
tion popup.

On Line Help
You can extend Math Tablet’s on line help by creating your own htm help file and placing it in
Math Tablet’s program directory. You must then quit and restart Math Tablet before the online
help will be updated. (Use CTRL Q to quit Math Tablet).

name of the current workspace, if it has been saved

enter up to 500 characters of text here

tap to save your settings

31Modules and Module Menu
Modules are plug-in libraries that extent the capabilities of Math Tablet. Modules can provide
new features and functions, or they can simply be a custom keyboard that simplifies access to
features in other modules. Documentation for creating your own modules using C++ is avail-
able on request.

To install a module, copy the module’s dll and help htm files to the Math Tablet directory and
restart Math Tablet. You can have up to 16 modules installed at once.

To switch between modules use the Options bar discussed below

You can list five modules here for quick
access.

Use the Module Menu to select any mod-
ule, or change the modules shown on the
bar. You can have up to 16 modules
installed at once.

The Module Menu is accessed using the key

Lists all available modules. The keypad will change
when you select a given module

Tap on an item to add it to the Options bar.

The “blank” item does not show any module.

The “auto” item creates spots that change to show
your last used module. These items change when
you select a module from the Module Menu that is not
already showing on the module bar. This option is
useful if you normally work between more than 4
modules.

Modules which will appear on the
Options bar

Use this to change the four modules that are shown
on the Options bar

Remember, you can create custom functions using Math Tablet’s built in scripting language.
For many applications, this is much easier than creating a C++ module.

Show a list of all user scripts

32

Key Function Description Module
add, strings are concatenated Built in
subtract Built in
multiply, if the operands are a scalar and a matrix,
every element in the matrix is multiplied by the
scalar.

Built in

divide, you can not divide two matrices. If a matrix
is divided by a scalar, every element in the matrix
is divided by the scalar

Built in

+_

*

/

ANS recalls the results of the previous expression block
on the stack. Use to chain calculations together.

Built in

The following function are always available on the right half of the keypad

The following pages describe the modules and feature that are included with Math Tablet. For
each module the description lists:

1) the key you must press to access the function
2) the corresponding text that is entered in the expression block. This is the text you must

enter if you use handwriting recognition
3) a description of how the function works
4) the module that must be installed in order to use this function. Some modules use features

from other modules. “Built in” means that the feature does not require any modules.

Modules

ANS(n) recalls the results of the nth previous expression
block on the stack. ANS(1) is the previous block,
ANS(2) is two blocks up... n must be greater than
zero. Use to chain calculations together.
To automatically enter the ANS function, tap on a
non-active expression block just to the left of the
answer and below the actual expression.
Always use the ANS(n) form when using RPN.
Math Tablet will automatically adjust n as the stack
changes

Built in

33

Key Function Description Module
log(x) log base 10 Sci
10^(x) 10x Sci
ln(x) log base e Sci
exp(x) ex Sci
y^x yx Sci
nrt(x,y) Sci
1/(x) 1/x Inverse Sci
1/(x)2 1/x2 Sci

x2 x squared Sci

x3 x cubed Sci
abs(x) absolute value of x, or magnitude of the complex

value x
Sci

sqrt(x) square root of x Sci

Scientific Module
The Scientific module provides many common scientific and engineering functions. To access
some functions you must press the ALT key first

Key Function Description Module
conj(x) complex conjugate Built in
re(x) real part of x Built in
im(x) imaginary part of x Built in
i sqrt(-1) the imaginary number Built in

Key Function Description Module
sinh(x) hyperbolic sine Sci
cosh(x) hyperbolic cosine Sci
tanh(x) hyperbolic tangent Sci
asinh(x) arc-sinh Sci
acosh(x) arc-cosh Sci
atanh(x) arc-tanh Sci
sin(x) sine Sci
cos(x) cosine Sci
tan(x) tangent Sci
asin(x) arc-sine Sci
acos(x) arc-cosine Sci
atan(x) arc-tangent Sci

deg(x) converts x from radians to degrees Sci
rad(x) converts x from degrees to radians Sci
polar(x,y) converts x,y to polar coordinates r,t (theta) Sci
rect(r,t) converts r,t (theta) to rectangular coordinates x,y Sci
pi (3.1415…) Sci

Trigonometric

Scientific

Complex

arg(x) the argument of x. This is zero except for complex
numbers.

Sci

atanyx(y,x) arc-tangent returns result in correct quadrant Sci

the xth root of y

y@x enters a value in complex polar form where y is
the magnitude and x is the angle. This uses the
formula y(cos(x)+sin(x)i). x and y must be real.

Sci

34

The Advanced module provides matrix and advanced features, such as equation solvers.

Advanced Module

Key Function Description Module
{} use to creates a matrix. Separate columns with a

comma and rows with a |.
Built in

T(x) matrix transpose Built in
det(x) matrix determinate Built in
inv(x) matrix inverse Built in
I(x) creates an x by x identity matrix Built in
zero(r,c) creates an r by c matrix of all zeros Built in

Key Function Description
rk(func(x,y),x0) solves the nonlinear differential equation of

the form
dy/dx = func(x,y) with y(0) = x0

func(x,y) must be supplied as a text value
— either a literal or a string variable.
The solution will be plotted when the
expression block is plotted
Example: rk(“x+y”,3) solves the equation

dy/dx = x+y with y(0) = 3

Adv

Advanced

rref(x) computes the row reduced echelon form of x. x
must have more columns than rows.

Built in

augc(a,b,....) combines matrices by augmenting columns Adv
Advaugr(a,b,...)

Module

Matrix

| use to separate rows when entering a matrix Built in

roots(an, an-1, … a0)

or

roots(m)

solves for the roots of the polynomial of the
form

anyn+ an-1yn-1+ … + a1y+ a0 = 0

Maximum n = 18.
If “m” is a matrix, then m = {an, an-1, … a0}

Adv

ddt(func(x),dxoptional) differentiate func(x) at the current value of x.
dx is an optional parameter specifying the
increment used in differentiation. The
default value for dx = 0.01, func(x) is
supplied as text.
Example: ddt(“sin(x)”)

Adv

fill(a,b,c) creates a matrix with one column. The row values
start at a, end at c and are incremented by b.

Adv

ones(r,c) creates an r by c matrix of all ones Adv

V: forces the expression to use vectored operations. Built in

eig(x,“varopt”) computes the eigenvalues of x. The eigenvectors
are stored in the optional variable, var.
Example: eig(x,“v”) finds the eigenvalues of x and
stores the eigenvectors in the variable v

Adv

combines matrices by augmenting rows
Advaug(a,b,...) combines matrices into a single column vector

35Advanced Module (continued)

integ(func(x),a,b,Opt) integrate func(x) between the limits a and b
using Romberg algorithm.
func(x) must be supplied as a text value —
Example: integ(“sin(x)”,1,2)
Opt is optional parameter“
> 1, use Simpsons method with Opt partitions
< 1, specifies tolerance for Romberg method
“x” use Simpsons when graphed for fast
graphing

Adv

solve(func(var),a,b,varoptional) solves for a solution to the nonlinear eqn.
func(var) = 0 where a< var < b

var is an optional parameter which specifies
which variable to solve for. The default value
for var is “x”. var must be supplied as a text
value — either a literal or a string variable —
ie “y”. See example #3

Adv

eval(txt) evaluates the expression stored as text
txt must be supplied as a text value
eval must re-parse txt each time it is
evaluated. Graphing expressions which
contain eval can take up to twice as long as
graphing the expression directly.

Built in

Key Function Description Module
Advanced

lti(an, an-1, … a0, f(x),ICopt)

or

lti(m,f(x),ICopt)

solves the linear time invariant differential
equation of the form:

any(n)+ an-1y(n-1)+ … + a1y(1)+ a0y = f(x)

y(n) = dny/dxn Maximum n = 9

f(x) must be supplied as a text value —
either a literal or a string variable, ie “sin(x)”.
If “m” is a matrix, the an coefficients are

m = {an, an-1, an-2, ... a0}

The solution will be plotted when the
expression block is plotted. lti uses a
Runge-Kutta method with a fixed time step
based pn the x axis range. Zoom in on the
graph to improve the accuracy.
ICopt is an optional matrix holding the intial
conditions, from the highest to lowest
derivative. Initial conditions are set to zero if
ICopt is not provided

Example: lti(1,2,1,“sin(x)”) solves

d2y/dx2 + 2dy/dx + y = sin(x)

Adv

size(a) returns the number of rows and cols in “a”
as a matrix {rows, cols}

Adv

36Hexadecimal Module
The Hexadecimal module provides bitwise functions and makes it easier to use Math Tablet’s
built in hexadecimal features. Hexadecimal operations assume an unsigned 32 bit integer.

Key Function Description Module

Ox use to enter hexadecimal values. OxFFA2 enters
the hexadecimal value FFA2

Built in

x _AND_ y bitwise x AND y Hex
x _OR_ y bitwise x OR y Hex
x _XOR_ y bitwise x XOR y (exclusive OR) Hex
NOT x bitwise NOT x Hex
x >> y shift right - bit shift x right y bits Hex
x << y shift left - bit shift x left y bits Hex

Hexadecimal

37Statistics Module
The Statistics module provides functions for entering and analyzing data sets. Data sets are
stored in a n x 2 matrix variable, where n is the number of data points. The first column of the
matrix contains the independent value of the data and the second column contains the depen-
dent value. If the data set is one dimensional, then the first row can simply contain an integer
value representing the current observation.

To make it easier to enter data, the statistics module includes two special keys: the Set and the
Store keys.

The Set key lets you select a set of matrix variables to use to store your data. When a vari-
able is selected it is shown in the key below the Clr variable key. The matching variable is
shown in the key below . The statistics modules matches the following variables as pairs: m n,
o p, and q,r. You are not required to use these variables. They are provided only for conve-
nience.

The Store key can be used to quickly load data into a variable.
The Store key does the following:
1) enters the “store” function on to the expression stack
2) automatically enters the name of the currently selected variable
3) sets the row value to the next free row in the matrix variable
4) executes the expression. This loads the data values into the matrix.

For example to enter the following data into the “m” variable:

x 3 5 9 11
y 2 3 21 13

Enter the following:

1) Tap Set and pick “m” as the data variable
2) Clear the contents of “m” by entering clrv(“m”)
3) Enter “3,2" with out the quotes and press the key

The expression store(1,”m“,3,2) will be entered on the stack and executed
4) Enter “5,3" with out the quotes and press the key
5) Continue entering the rest of the data

You can verify the contents of “m” by entering “m” on the expression stack and executing that
expression. The partial contents of “m” will be displayed. Tapping on the displayed value of
“m” will open the variable window so you see all the values of “m”.

If the data set contains only one set of values, the y values for example, then you would enter
the data as discussed above, but only enter a single value and press . The store function
will automatically assigns an x value to the data and stores your entered value as the y value.
See the following statistics function documentation.

The statistical keypad

Sets the default memory loca-
tion for storing data sets

Stores the current values into
the data set

38

Some statistical functions can operate directly on the data stored in a variable without having
to “load” the data set. The reference below refers to a variable data set as var, where var is
the name of a variable enclosed in quotes, such as “a”. Operation performed directly on
variables require less memory. avg(“m”) computes the average of values in the variable “m”
directly. avg(m) loads the values in “m” onto the evaluation stack and then computes the
average of those values.

Statistics Module (continued)

Statistical
Key Function Description Module

avg(val) or avg(x) Computes the average value for each column in
the matrix, or row if the matrix has only one row

Stat

std(val) or std(x) Standard deviation of each column in the matrix,
or row if the matrix has only one row

Stat

sx(val) or sx(x) Sum of the rows in each column in the matrix Stat

sxx(val) or sxx(x) Sum of the square of each value in a column, or
row if the matrix has only one row

Stat

sxy(val) or sxy(x) Sum found by multiplying the elements in a row
together and then summing the result for each row.

Stat

num(val) or num(x) Number of rows in val Stat
plot(var) Scatter plot of the values stored in var. The x

values are stored in the first column, the y values
in the second. See Graphing Module.

Graph

plot(var,“-”) Line plot of the values stored in var. The x values
are stored in the first column, the y values in the
second. See Graphing Module

Graph

mtest(var,x) Tests the hypothesis
H0: mean(var)= x

H1: mean(var) x

var = the variable holding the data set. The
second column of the data set is used.

x = the test mean value

The t statistic is

t = (mean(var) — x)* sqrt(N)/std(var)

where
mean(var) = mean of the data set stored in var
std(var) = standard dev. of the data stored in var
N = number of items in the sample

mtest return a 1x2 matrix of the form:
1. the t parameter
2. the p value for the 2 sided test

Stat

39Statistics Module (continued)

Statistical

mdtest(var1,var2)
mdtest(var1)

Tests the hypothesis
H0: mean(var1)= mean(var2)

H1: mean(var1) mean(var2)

var = the variable holding the data set. The
second column of the data set is used.

x = the test mean valueStudent t-test for equal
means on data sets with equal variances.

If two var locations are provided, mdtest compares
the second columns of each var. If a single
var is provided, mdtest compares the first
and second columns.

The t statistic is
t = (MeanVar1 — MeanVar2)/(s*sqrt(1/N1+1/N2))
and

s = sqrt(((N1-1)*s1*s1 + (N2-1)*s2*s2)/(N1+N2-2))

where
MeanVar1 = mean of the data set stored in var1
MeanVar2 = mean of the data set stored in var2
N1 = number of values in var1
N2 = number of values in var2
s1 = std. dev of values in var1
s2 = std. dev of values in var2

mdtest return a 1x2 matrix of the form:
1. the t parameter
2. the corresponding two sided p value

Stat
Key Function Description Module

40Statistics Module (continued)

Statistical

pairtest(var1,var2)
pairtest(var1)

Tests the hypothesis
H0: mean(var1-var2)= 0

H1: mean(var1-var2) 0

using a paired t test.
var = the variable holding the data set.
If two var locations are provided, mdtest compares

the second columns of each var. If a single
var is provided, mdtest compares the first
and second columns.

The t statistic is

t = (mean(var1-var2))* sqrt(N)/std(var)

where
mean(var) = mean of the data set stored in var
std(var) = pooled standard dev. of the data

stored in var
N = number of items in the sample

mtest return a 1x2 matrix of the form:
1. the t parameter
2. the p value for the 2 sided test

Stat
Key Function Description Module

41

sdtest(var,var)
sdtest(var)

Tests the hypothesis
H0: Var(var1)/Var(var2)= 1

H1: Var(var1)/Var(var2)) 1

If two var locations are provided, sdtest compares
the second columns of each var. If a single var is
provided, sdtest compares the first and second
columns.

The f statistic is
f = (s1*s1)/(s2*s2)

where
s1 = std. dev of values in var1
s2 = std. dev of values in var2
Values are automatically ordered such that s1<s2

sdtest return a 1x2 matrix of the form:
1. the f parameter
2. the p value corresponding two sided
probability from the f-distribution

Stat

lsq(var) or lsq(x) least square curve fit of the values in var. The x
values are stored in the first column, the y values
in the second.
lreg return a 1x3 matrix of the form:
1. a
2. b, where y=ax+b is the best fit line
3. r, the regression coefficient
If lreg is plotted, it plots the line defined by
y=ax+b

Stat

x! factorial of x. Noninteger values of x are truncated
before the factorial is computed.

Stat

mm(var) or mm(x) Finds the Minimum, Maximum values for each
column in var, or row if the matrix has only one
row. mm return the min, and max values in a
matrix

Stat

sort(var,n) or sort(x,n) Sorts the columns of the matrix stored in var
according to the values in the n th column, or by
row if the matirx has only one row

Stat

perm(n,m) Permutation of n things taken m at a time Stat
comb(n,m) Combination of n things taken m at a time Stat

Key Function Description Module

Statistics Module (continued)

Statistical

42

tdist(x,v) Computes the one sided, left tail, probability of the
t-distribution at x with v degrees of freedom.

Statfdist(x,v,w) Computes the one sided probability of the f-
distribution at x with v,w degrees of freedom.

Stat

chi(x,v) Computes the one sided, left tail, probability of the
chi-squared distribution at x with v degrees of
freedom.

Stat

store(n,var,x,y)
store(n,var,y)

Stores the value (x,y) in variable var in row n.
If x is not provided, x is assumed to be the same
as the row number, n.

Stat

clrv(var) clears the contents of var and reset the matrix size
to zero rows

Stat

Key Function Description Module
norm(x,m,s) Computes the one sided probability in the left tail

of a normal distribution. m is the distribution mean,
s is its standard deviation. The default value is 0
and 1.

Stat

Statistics Module (continued)

Statistical

invnorm(p,m,s) Computes the value corresponding to the one
sided probability in the left tail of a normal
distribution. p is the probability,m is the mean, s is
its standard deviation. The default value is 0 and 1.

invtdist(p,v) Computes the value corresponding to the one
sided, left tail, probability of the t-distribution. p is
the probability with v degrees of freedom.

invfdist(p,v,w) Computes the value corresponding to the one
sided, left tail, probability of the f-distribution. p is
the probability with v,w degrees of freedom.

invchi(p,v) Computes the value corresponding to the one side,
left tail, probability of the chi-squared distribution.
p is the probability at x with v degrees of freedom.

binom(x,np) Computes the probability that y<= x when
sampled from n event with individual probabilities
of p. The corresponds to the one sided, left tail,
cummulative probability for the binomial
distribution. distribution for x events taken
degrees of freedom.

invbinom(P,np) Computes the x such that the probability y<= x
when sampled from n event with individual
probabilities of p, is P. The corresponds to the one
sided, left tail, cummulative probability for the
binomial distribution.

Stat

Stat

Stat

Stat

Stat

Stat

43Conversion Module

If, for example, you have the default units set to meters (SI units) and you enter
4FT + 6IN + 12CM
the answer will be given in meters as 1.4916
If you change the base units to feet and re-evaluate that expression block, the answer will be
in feet as 4.8937
If, you have the default units set to meters (SI units) and you enter 2GAL the answer will be
given in meters3 as 0.0004 since meters are the default units, and meter3 is the unit of vol-
ume. When in doubt, you can specify the units on both sides of the > as discussed below.

Math Table does not check to see that you are using consistent units. You can for example
enter 6FT+3GAL and get a number which is meaningless. The conversion module keypad
is color coded. Compatible units are grouped together with the same background color.

Integrated Unit Conversion
You can convert between compatible units using the > key as follows.
Current Units > New Units The value is converted from the old units to the new units.
For example: 6FT>IN returns the answer 72, which is the length in inches.
The > works regardless of the current base units. However, if you are converting from the
base units you do not need to specify the units on the left side of the > operator.

For example if you have the base units set to feet, but you want the answer in inches you
would enter (1.5)>IN
which returns 18. That is 1.5 ft = 18 in

If you change the base units to meters and reevaluate the expression it will convert 1.5
meters to inches.

You can also convert between compound units. For example
(144IN2)>(FT2) returns 1
12(FT/SEC)>(MI/HR) returns 8.1818

The Conversion module makes it easy to work with different systems of units. This module has
three features: the default base units, integrated unit conversion, and user defined
conversions and constants.

Default Base Units
There are two base units: meter-kg-sec or ft-lbm-sec The base units are set using the MKS or
FPS button. Once set, the default units are indicated with a diamond on the buttons. When
ever you apply units to a value, that value is automatically converted to the default unit.

The base FPS units are:

ft - feet
lbm - pounds (mass)

(not slugs)
lbf - pounds (force)
s - seconds

The base SI units are:

m - meters
kg - kilograms (mass)
N - newtons (force)
l - liters

44

User Defined Constants and Conversions
In addition to the built in unit conversions, you can create your own conversion constants.
These constants are simply values that convert between one unit and another. They are not
integrated into Math Tablet like the previously discussed conversions. However, you can orga-
nize and add new conversion as you need them.

The constants and conversions are accessed using the Constant button

Pressing the Constant buttons brings up the following menu:

Use to select from a list of available conversion constants
categories. Selecting a category brings up the selection
box shown below

Use the Edit menu option to edit conversion values, add new values
or create new categories. Selecting Edit opens up the Units editor.

Select the units you want to convert
to and from. The conversion con-
stant will be entered on the expres-
sion stack as soon as you make two
selections.

Conversion Module (continued)

You can perform unit conversions in Math Tablet using either the built in units conversion feature or
using the User Defined Constants. In many cases you can convert between units using either method.
In general you should use the built in conversions if possible because it makes it easier to track your
work and identify errors. For example, it is much easier to figure out what you did if you enter

145.4(FT/SEC)>(MI/HR)

than if you enter

145.4(0.681818)

Choosing an Appropriate Conversion Method

45

Units Editor
The Units Editor is a separate application that lets you create and edit your own conversion con-
stants. Conversion constants are grouped in to sets of compatible units, i.e. length, area,
velocity.... Each set can hold up to 200 units, and you can have as many sets as you need.
Within each set there is a “base” unit. This can be any convenient unit. To add units to a set,
you provide the conversion factor from the base unit to the new unit. You need provide only this
one conversion factor. Math Tablet automatically derives conversion factors for all the other
units defined in that set.

The Units Editor stores conversion constants in two forms: unit conversions and constants. Unit
conversions let you convert between units. Constants are single unrelated values, like the “the
speed of light”. Constants use a special base unit called “Constant”.

Unit sets are stored as separate files which must be placed in the same directory as the Math
Tablet application. The Units Editor handles this automatically. You can also add unit sets
directly by copying existing unit set files to your Math Tablet application directory.

The Units Editor is described below.
The start up screen lets you select which unit set you wish to
edit. You can also create new unit sets or delete existing sets.

To edit an existing unit set select “Load”

When you create a new unit set you must provide the name of the
unit set and the “base” unit for that set. The unit set name corre-
sponds to the file name for that unit set. The base unit is the com-
mon unit for which you will have to provide conversion factors for
all other unit. Once a base unit is selected it can not be changed.

If you want to create a list of constants, enter “Constant” for the
base unit.

Once you’ve created a unit set you can add, delete or edit the units
in that set. When you add a unit you must provide the name of the
unit and the conversion factor to as many significant digits a possi-
ble. 10 digit are recommended.

The button inverts the current value in the Multiply by box.
Use this if you know the conversion factor to the base unit instead
of from the base unit.

The button brings up the start up screen and lets you switch to a
different unit set.

.

Conversion Module (continued)

46

Key Function Description Module
x > y Converts from one unit to another.

Starting Units > Desired Units. Note: a>b = b/a
Cvt

Units Change the base unit between metric and US. Cvt
CF(x) Converts the value x from degrees Celsius to

degree Fahrenheit
Cvt

FC(x) Converts the value x from degrees Fahrenheit to
degrees Celsius

Cvt

Conversion Functions

Key Abreviation Unit Module
M meter Cvt
MM millimeter Cvt
CM centimeter Cvt
KM kilometer Cvt
FT feet Cvt
IN inch Cvt
YD yard Cvt
MI mile Cvt

KG kilogram Cvt
G gram Cvt
LBM pound mass Cvt
OZ ounce mass Cvt

L liter Cvt
CC cubic centimeter Cvt
GAL gallon (liquid) Cvt
CIN cubic inches Cvt

QT quart (liquid) Cvt

BTU B.T.U. (th) Cvt

FTLB foot-pound Cvt
KWH kilowatt-hour Cvt
CAL calorie Cvt

PSI pounds per square inch Cvt
PA pascal Cvt
ATM atmosphere Cvt

PT pint (liquid) Cvt

J joule Cvt

Conversion Units

N newton Cvt
LBF pound force Cvt
OZF ounce force Cvt
DYNE dyne Cvt

Conversion Module (continued)
The Conversion module provides many common scientific and engineering conversions. To
access some functions you must press the ALT key first. Conversion factor can be combined to
create compound conversions, such as FT/SEC

x2 Squared - use to create compound units Adv
x3 Cubed - use to create compound units Adv

47

MDY(x) returns a text string indicating the month, day, year
and time corresponding the the value x. Where x
is the number of seconds since Jan 1, 1601

Cvt

SDATE(m,d,y) returns the number of seconds since Jan 1, 1601
where
m= month, Jan = 1, Feb = 2, ...
d= day
y= year

You can use the time conversion to perform date
calculations. For example, to determine the time
and date which is 36 days, 23 hours and 5 minutes
from July 4, 1964 at 1:42 PM

a=SDATE(7,4,1964)+13HR+42MIN
note 13hr + 42min = 1:42pm

MDY(a+36DAY+23HR+5MIN)
this offsets the time “a” by 36days, 23hrs 5min
and returns the corresponding day

“12:47:00 on Mon Aug 10, 1964"

You can compute the number of days between
Jan 4, 2003 and July 5, 2004 as follows:

SDATE(7,5,2003)-SDATE(1,4,2003)
ANS>DAY converts seconds to days

548

Cvt

SEC seconds Cvt
MIN minutes Cvt
HR hours Cvt
DAY days Cvt

Key Function Description Module
Time and Date Conversions

Conversion Module (continued)

NOW returns the number of seconds since Jan 1, 1601 Cvt

48User Module

The User module lets you create a custom keyboard layout. This makes it easy to combine
features you commonly use from different modules into one custom module.

The User module has 23 blank keys and a Set key.

To assign a function to a blank key:

1) Tap on the Set key.

2) Tap on the key you wish to change. This brings up the key definition box shown below.

Use to assign keys. Tap twice to save your settings.
Settings are automatically saved when you quit
Math Tablet

Blank keys the user
can assign

3) Enter the text the key should produce when you tap it.
The key’s text can be any text you wish up to 60
characters. It can be a simple constant or a
combination of functions. Tapping on the “Use
Expression” button, copies the text from the currently
active expression. Thus, you can build your text in the
expression stack and then copy it to a user key.
Finally, place a # where you wish the cursor to be
placed when you tap the user key. The # symbol will
be removed from the text when the user key is pressed.

4) Enter the label for the key. The label is limited to
seven characters or the size of the key.

5) Tap Set to close the key definition box

A useful key assignment is the open/close parenthesis.

Text: (#)
Key: (...)

When pressed this key enters a pair of parenthesis and positions the cursor between them

You can create additional user key modules by duplicating the Userkey.dll module file and
giving it a different name - you must keep the dll extension. The new module will act just
like the original Userkey module, but you will be able to assign a different set of keys to the
keyboard. This would give you two user definable keyboards. The disadvantage is that
both modules will have the same icon when shown on the module keypad.

A useful “hack”:

49Scripting Module
The Scripting module lets you write scripts (short programs) which can be run directly in Math
Tablet. This makes it easy to add advanced features to Math Tablet with out having to write a
full module using C++.

A Math Tablet scripts is a series of expressions which are executed in a particular order. The
script can contain most valid Math Tablet expression. In addition to the standard Math Tablet
expressions, the script modules provides special functions for controlling the flow of the script.
These include, IF-THEN-ELSE, FOR and WHILE constructs. Scripts can contain local variables
and can be called recursively - with in the memory limits of Math Tablet.

A script is written by creating a workspace which implements your function. The script module
provides access to commands for controlling the flow of the script. The scripting keypad is
shown below. The functions are described on the following pages. The paragraphs below
highlight a few important feature of Math Tablet’s scripting capabilities.

Flow control commands

Boolean and comparisons
Space for formatting

A simple script
A script is created by “writing a program” in a Math Tablet
workspace. Each expression in the workspace corresponds
to one line in the program. The following simple script
computes the sum of the first “x” whole numbers.

Running a script with in its workspace
You can run a script directly with in the workspace where it was created by tapping and holding
the pen on a desired expression and selecting “Run from here..” from the expression menu.
The script is run until it encounters a RETURN or end of the workspace. When running a script
in this manner only expressions which are executed by the script are updated. This is different
from the normal updating of the expression stack where all expression below the active
expression are executed.

This method is useful for running simple scripts and for testing your scripts. The disadvantage
is that this method takes more memory than running the script as a function (see the next page)
and does not support local variables or parameter passing.

50

Compiling: Math Tablet automatically loads and compiles Script Functions as you use them.
Before a function can compile, all the variables used in that function must be declared as local
variables, or available as global variables in the workspace in which the function is running.
You can ensure that a variable is available globally by using the GLOBAL function.

Math Tablet can store up to 20 pre-loaded and compiled scripts at once. If you call on more
than 20 scripts Math Tablet must unload and reload scripts as they are used. When you save a
script, Math Tablet automatically unloads the script and then reloads and compiles it when you
next use it. This ensures that you are always using the most current version of the script. You
can force Math Table to unload all compiled scripts using the Clear Loaded Scripts or Clear All
menu options.

Script Functions Name Search Order: When you enter a function name in an expression block
Math Tablet searches for the function in this order: 1) built in functions, 2) user functions in the
workspace, 3) functions in modules , and finally 4) scripts in the Script Directory. Thus you
should use unique file names for Script Function workspaces.

Running a Script as a Function (A Script Function)
You can run a script from a different workspace by using the name of the
script (the workspace’s file name) as a function in an expression block. The
value returned from the script is the value in the RETURN function of the
script. To minimize memory use, Math Tablet does not load the variables
and user functions for the script’s workspace. Memory is further conserved
because Math Tablet does not store the result of each expression block.
Thus you can not use the ANS command in a Script Function.

You can abort the currently running script by tapping on the screen. Math Tablet dislays
a message which tells you which script you aborted and on what line.

Scripting Module (continued)

IMPORTANT Restrictions for Running a Script as a Function:
1) The script’s name must begin with a capital letter.
2) The script’s name must be less than 20 characters long and can not contain any numbers or

symbols.
3) The script’s workspace file must be located in the Script Directory.
5) Function scripts do not support the ANS function.
6) User functions must be defined in the workspace running the function script. User functions

are not saved with the script

Local Variables: Script Functions automatically create the local variables, x, y, z, a, b, c. You
can create additional local variables using the LOCAL command. Any variable which is not
explicitly declared as local is a global variable. Math Tablet does not follow local variable
scoping rules used in C++. Local variable created in one function are not available in functions
called with in that funcion.

Parameter Passing: You can pass up to six parameter to a Script Function. These parameters
are automatically stored in the local variables x, y, z, a, b, c respectively when the script
executes unless you force Math Tablet to pass the parameters into other variables using the
FUNC function. Note that FUNC automatically declares all of its parameters as local variables.

List of Scripts

To type a Script Function into the active expression, select the Variable and
Functions popup and then tap on the Script button at the bottom of the
window.

51

Example Script
The following example shows two different implementations of a factorial command. The
factorial of x is the product of all positive integers, excluding zero, less than or equal to x. The
first script uses a FOR loop, the second uses recursion. Both scripts assume that they will be
executed from another workspace as a Function Script and that “x” holds the value for which
the factorial is computed. (Recall that in a Function Script, the function parameters are
automatically stored in the local variables x, y and z.)

Once the script has been saved it will appear on the
Variable and Functions pop-up in the Script view . The
workspace to the right shows how the two versions of the
script can be called as Script Functions. Remember that
the ForFact and Fact workspaces must be saved in the
“Script Directory”.

This script uses a FOR loop to
compute the factorial of “x”. This
script was saved as “ForFact"

This script uses recursion to
compute the factorial of “x”. It’s
useful to save this script as
“Fact” before entering the last
RETURN. This forces a “Fact”
item on the Variable and
Functions pop-up in the Script
view so that the text “Fact” can
be easily entered into the
expression block. The function
must then be re-saved after it is
completed.

This script uses recursion and
is limited by the stack depth in
Math Tablet. This version of
Fact will fail for values greater
than 35.

Scripting Module

52Scripting Module (continued)

Key Function Description Module
FOR(“x”,a,b,c) Implements a For loop. The counter can be any

variable. (replace x with the variable name).
a = the starting value for the counter
b = the value added to the counter at the end of
each loop
c = the ending value for the counter. The loop is
terminated when the counter is greater than c for
positive values of b, or less than c for negative
values of b
FOR must have a following matching END

Built in

WHILE(a) Implements a While loop. The loop continues to
execute while the value “a” is non-zero.
WHILE must have a matching END

Built in

ELSE Use to create an IF-ELSE conditional branch.
When paired with an IF, the ELSE block of
expression is executed when the IF conditional is
zero.
ELSE must have a preceding matching IF and a
following matching END

Built in

Flow Control Constructs

The Scripting module provides commands to create and run scripts in Math Tablet.

IF(a) Implements an IF conditional branch. The branch
executes the following block of expressions - up to
the matching ELSE if present - when the value “a”
is non-zero.
IF must have a following matching END

Built in

END Use to terminate the end of a block of expressions
in a FOR, WHILE or IF construct

Built in

LOCAL(“sqp”) Creates a set of local variables in the currently
running script. “sqp” or “s,q,p” is a text string
which contains the variables which will be local. x,
y, z, a, b, c are always local and do not need to be
declared in LOCAL. You must separate variable
names by commas if they are not single character
variables.
LOCAL must be invoked before you use any local
variables.

Built in

RETURN(value) Exits a function and returns the value. Built in

LOCAL(“s,q,p”)

53Scripting Module (continued)

Key Function Description Module

ASK(“text”) Displays a text message for the user. If the text
end in a “?”, the user is prompted for a Yes, No
answer. ASK returns a 0 for a No reply and a 1 for
a Yes reply
Prompts the user for variable values and stores the
values in the variables. Returns a value less than
0 if an error occurs. ASK can prompt for up to
three variables. For each variable you must provide
a text prompt and the corresponding variable. For
example:
ASK(“Numerator”,“x”, “Denominator”,“y”)
prompts the user the “Numerator” and
“Denominator” stores those values in the variables
x and y respectively.

Scpt

ASK(“text”,“var”,...)

load(“name”,“var”) Loads the variable “var” from the workspace file
“name”. If “var” is omitted all of the variables in the
file are loaded.

Built in
load(“name”)

save(“name”) Saves all of the variables in the workspace, or
running script, to the file “name” in the current script
directory. “name” must be a string variable or literal.

Built in

GLOBAL(“sqp”) Ensures that the variables s,q,p are global
variables. If they do not exist in the workspace in
which the script is running, GLOBAL creates them.
You should declare all global variable you use in a
script with the GLOBAL command. This
guarantees your script will run even if the
workspace does not currently contain the variables.
GLOBAL should be invoked before you use any
global variables

Built in
GLOBAL(“s,q,p”)

FUNC(“s,p,q”) Creates the local variables s, p, q and stores the
function parameter in the variables respectively.
You can have up to 6 function parameters. If
FUNC is not used, function parameter values are
automatically stored in x,y,z,a,b,c. FUNC returns
the number of parameter the user actually supplies
when calling the function.

Built in

isvar(“var”) Returns 0 is var is not a variable. Returns 1 if it is a
local variable. Returns 2 if it is a global variable.

Built inisvar

FUN

GLB

54

Key Function Description Module
mod(x,y) Computes x modulo y. The result is the remainder

from the division x/y.
Scpt

Misc. Functions

frac(x) Returns the fractional part of x Scpt

int(x) Returns the integer part of x Scpt

Inserts spaces into the active expression. This is
useful for formatting scripts.

Scpt

sign(x) Returns -1 if x<0 otherwise returns 1 Scpt

Scripting Module (continued)

Key Function Description Module
x _LT_ y Returns 1 if x<y, otherwise 0 Scpt

Conditional Tests

x _GT_ y Returns 1 if x>y, otherwise 0 Scpt

x _EQ_ y Returns 1 if x=y, otherwise 0 Scpt

x _NE_ y Returns 1 if x y, otherwise 0 Scpt

x _LE_ y Returns 1 if x² y, otherwise 0 Scpt

x _GE_ y Returns 1 if x³ y, otherwise 0 Scpt

x _AND_ y Returns non-zero if both x and y are non-zero
otherwise it returns zero

Hex

x _OR_ y Returns non-zero if either x or y are non-zero
otherwise it returns zero

Hex

55

The Graphing module extends the graphing capabilities of Math Tablet. It provides special
functions for plotting data stored in a matrix, for creating polar plots, and for creating custom
plotting functions.

The graphing functions discussed below supplement the graphing capabilities built into Math
Tablet. You should use the built in capabilities for plotting equations which are simple functions
of the independent variable x.

As in all Math Tablet plotting, the expression block must be selected for drawing, before the
graphing commands will actually graph.

Plotting Data In a Matrix
The “plot” command graphs data stored in a matrix as (x,y) pairs. Each (x,y) pair must be
stored in a column of the matrix. To store n data points you would use an nx2 matrix. For
example, the coordinates (1,4), (3,5), (3,6) could be store in the variable u as:

u= {1,4|3,5|3,6}

The points could be plotted by

plot(“u”)

When the variable name is enclosed in quotes, Math Tablet takes the data directly from the
variable storage location (programmers would call this “pass by reference”). You can also plot
data directly as

plot(u) or plot({1,4|3,5|3,6})

In this case the matrix is copied to the expressions block and then plotted from that data
(programmers call this “pass by value”). The graph in both cases is the same, however for
large data sets plot(“u”) is more memory efficient because the contents of u do not have to be
copied to the expression block before they are graphed.

The plot command can also graph single dimensioned matrices. When the matrix has only one
row or column, the data is plotted as the y value, and the x value corresponds to the matrix
index. So for example:

plot({1,4,5,3})

is the same a plotting

plot({0,1| 1,4| 2,5| 3,3})

You can control how the graph looks using optional parameters which are discussed on the
following pages. The default line style for “plot” is “#”, (See the next page)

Graphing Module

56

Custom Plots
You can generate custom plots using the moveto, lineto commands. These functions let you
draw on the graphics screen as if you controlled a pen plotter.

moveto(x,y) moves the “pen” to the specified location on the screen

lineto(x,y) draws a line from the current “pen” location to the specified location.

cleargraph() clears the sequence of moveto, lineto commands

drawgraph() draws the sequence of moveto,lineto commands. “drawgraph” has the same
optional parameters as the plot and polarplot commands for controlling the line
style. For example, drawgraph(“x”) marks the points on the graph with an “x”.
The default style for drawgraph is “-” .

Graphing Module (continued)

The polar command can also be used to plot a polar equation. The equation must be entered in
quotes, must be at least two characters long, and must be written as r = f(t) where t =theta.
For example:

polarplot(“2t”,“#”)

plots the spiral r = 2*theta marking each data point with a box

Polarplot nominally plots equations for 0<theta<360 (or 0<theta<2pi if you are in radians). You
can change the plot range by specifying the starting and ending values. Note that the polarplot
command calculates a discrete set of data point corresponding the specified equation. This
number is calculated automatically, but is limited to 500 data points. If the plotting range is too
large, for example 0<theta<10000, the plot may not be smooth and you may need to break the
range into smaller segments.

As in the “plot” command, you can control how the polar plot looks using optional parameters
which are discussed on the following pages. The default line style for “polarplot” is “-”.

Polar Plots
The “polarplot” function can be used to generate a polar coordinate graph from an equation or
from data tabulated in a matrix. Polar plots from tabulated data works just like the “plot”
command, except that the columns of the matrix are (r,theta) instead of (x,y).

57

Plotting From a Script
You can use any of the graphing commands with in a script function. When you use a
graphing command with in a script function the graph is shown only if you have selected the
particular script function for graphing and the function inside the script is marked for graphing.
This makes is easy to create complex custom graphing functions. See the Bode plot example,

If a script function does not contain any plotting commands, then the script function is plotted
just like any other function in Math Tablet. This means that one of the script’s parameters
must be specified as “x”.

Changing the Line Style
The plot, polarplot and drawgraph commands accept optional parameters that let you specify
the color and style of the plot. The line style parameter has the form:

“MLC”

where M = indicates the marker used for each data point
L = indicates whether the data points are connected with a line
C = indicates a color override. If you do not provide a color, the color selected in the

expression block is used.

M, L and C are all optional and can be provided in any order.

ML Parameters

“#”

“o”

“x”

“.”

“#-” or “-#”

“o-” or “-o”

“x-” or “-x”

“-”

Style

Line Style Parameters

Graphing Module (continued)

Color Parameters

C Parameter Color

“r” red

“g” green

“b” blue

“p” purple

“t” teal

“w” yellow

“y” grey

“k” black

none use expression block color

Examples:

plot(a,“#-t”) plots the contents of “a” using a teal line with squares on the data points
plot(a,“t”) plots the contents of “a” using a teal line with the default style settings
polarplot(“2t”,“x”) plot the polar eqn. “2t” by marking the data points with an “x”

58

Key Function Description Module

moveto(x,y) Moves the pen to the x,y location on the graph Graph

The Graphing module commands are listed below

Draws a line from the current pen location the the
x,y location specified.

Graph

cleargraph() Clears the sequence of moveto, lineto commands Graph

drawgraph(Opt1,Opt2) Draws the sequence of pen moves specified by
lineto, moveto when the expression block is
selected for graphing.
Opt1 is an optional string parameter which specifies
the line style use to draw the graph. Those
parameters are specifiedon the previous pages.
Opt2 is an optional string parameter which specified
an additional label for the graph.

Graph

Plotting Functions

plot(var,Opt1, Opt2) Plots the data in the matrix var
var can be a variable in quotes, such as “a”,
or an expression such as 2a+b (no quotes).
In both cases var must result in a matrix.
If the matrix is n (rows) x 1 (columns) the data is
plotted sequentially from the row data.
If the matrix is n (rows) x m (columns) the data is
plotted sequentially from the first two columns of the
matrix where the first two columns represent (x,y)
data pairs.

Opt1 is an optional string parameter which specifies
the line style use to draw the graph. Those
parameters are specified on the previous pages.
Opt2 is an optional string parameter which specified
an additional label for the graph.

Examples:

plot({1,2,3,4},“oy”,“plot1")
plot({1,2,3,4},”-#“)
plot({1,2|2,5|4,6})

Graph

Graphing Module (continued)

CONTIFGRAPHING()
or
CONTIFGRAHING(rtn)

Quits the script if the script is not being graphed
and returns the value in rtn, if provided.
Use this it skip portions of scripts that do not need
to run when the script is not being graphed. This
can make scripts run faster when not graphed.

Built-in

lineto(x,y)

59

Key Function Description Module
Plotting Functions (continued)

polarplot(exp,b,e,
Opt1, Opt2)

Plots the polar expression in exp.
exp must be a string value which is a function of the
variable “t” (theta). For example: polar(“3t+cos(t)”)
Plots the polar equation: r = 3t+cos(t)
IMPORTANT: exp must contain at least two
characters!
b,e are optional parameters which specify the range
of values for which t is evaluated, b<t<e
Nominal values are 0,360 for expressions in
degrees and 0,2pi for expressions in radians. b and
e must be provided as a pair.
Opt1 is an optional string parameter which specifies
the line style as discussed on the previous pages.
Opt2 is an optional string parameter which specified
an additional label for the graph.

Graph

Key Function Description Module
Supporting Plotting Functions

fill, ones Use create matrices. Adv

- x o # Graph style parameters. Graph

{} | Use to create a matrix. Built-in

augc, auga Use to combine matrices Adv

polarplot(var,
Opt, Opt2)

Plots the values in the matrix var as polar data. var
can be a variable in quotes, such as “a”, or an
expression such as 2a+b (no quotes). In both
cases var must result in a matrix.
If the matrix is n (rows) x m (columns) the data is
plotted sequentially from the first two columns of the
matrix where the first two columns represent
(r,theta) data pairs.
Opt1 and Opt2 and the same as described above.

Graph

Graphing Module (continued)

V: Specifies vectored operations Built-in

label(x,y,“text”,Opt2) Prints the “text” at location x,y on the graph.
Opt2 is an optional string parameter specifying color

Graph

title(x,y,“text”,Opt2) Prints the “text” at the screen location x,y on the
graph, where (0,0) is the upper left corner and
(239,129) is the lower left. Note that the y axis is
upsidedown.
Opt2 is an optional string parameter specifying color

Graph

text(x,“formatopt”) Coverts the value x to a text string. format is a
optional string parameter that specifies the
formatting using C sprintf format parameters.

Graph

60

Creating a Formula

1) Tap on the Set key

2) Tap on the key you wish to assign that formula to. This opens up the formula creator dialog
shown below. If a formula has already been assigned to a key, this lets you edit the formula.

3) Enter a name for the formula in the top edit box. You should choose a unique name that you
have not already used for a formula. This is only required if you want to evaluate the formula
directly in the expression stack using the “fm” command.

Formula Module

Use to create formulas

Keys for user
defined formulas

More user keys

The Formula module lets you create formulas relating several variables and equations and then
solve for any of the unknown variables. You can solve these formulas using a custom dialog
box, or directly in the expression stack. The Formula module also provides a custom keypad
where you can assign a key to your formulas.

Formula name. This is used to
access the formula directly in
the workspace using the “fm”
command

The name shown on the user key

Clears all formulas for this keyLoad formulas from a file. Use this to
extract formulas others have written
and save them to your set. The
formula files (*.fdt) you are loading
from must be locate in the My
Documents folder of your PocketPC

61

4) Enter the formula in the formula edit box. The formula can contain any valid Math Tablet
expression. Specify variables in your formula by enclosing them in pointed brackets “< >”.
A formula can have up to 14 unique variables and 12 unique but related equations.
Variable names can contain any characters except for “<” or “>”, and can have up to 20
characters, formulas can include up to 150 characters. The formula may optionally include
an “=”. If it does not include an “=”, the formula is assumed to have the form, formula = 0.
Examples of valid formulas are:

Future value formula
<Future Val>=<Present Val>*(1+<Interest>/100)^<Periods>

Power
<volts> = <ohms>*<amps>
<power> = <volts>*<amps>

Formula Module

The formula goes here. Surround
variables with < >. You can have
up to 14 variables.

Enters a <> for defining
variables

List of variables uses so far.
This us updated when you
press Next or Prev. Select a
variable to enter it

Show the next or previous equation if
you have multiple equations in your
formula. You can have 12 equations

5) Enter the search ranges for each variable value. If you leave these values blank, Math
Tablet will try to bound the solution automatically.

Search ranges are used only when Math Tablet is solving for a single value. Setting an
appropriate search range is important in formulas which are undefined for certain value, or
where a division by zero can occur.

Enter the minimum and
maximum value for each
variable

Quick keyboard for entering values. Press to see the
standard PocketPC keyboard

62

Evaluating a Formula from the Keypad
1) Tap on the key representing the formula you want to evaluate. This opens the formula dialog for

this formula.
2) Enter the known values in their appropriate locations. You can enter either a constant, or any

other valid Math Tablet expression.
3) Leave one or more of the variable boxes blank. These are the variables you wish to solve for.

You can only have as many unknowns as there are equations in your formula. This number is
shown at the top of the formula dialog. You can provide an initial guess for a value by using a
“?”

To provide an initial guess enter ?# where # is the initial guess.
To provide a range enter ?{L,U} where U is the lower bound and U is the upper bound.
For example ?10 starts the search at 10; ?{1,5} searches for a solution only between 1 and 5

4) Press “Solve” and Math Tablet will find a solution to your formula. If multiple solutions exist,
Math Tablet will display the first value it finds.

To find the solution to the formula for the same unknown, but using different known parameters,
just change the value of the known parameters and press solve. You do not need to clear the
unknown parameter value on successive solves. If you want to change which variable is solved
for, clear the box for that variable and press “solve” again.

Formula Module

Enter the known values in the
appropriate box. Leave the
unknown box blank, or enter
an initial guess by preceding
the value with a ?

Solves for the unknown (blank)
value and ? values

Copy that value to
the expression stack

Create an expression which will evaluate the
formula from the expression stack using the
“fm” command.

Scroll to see more
variables if applicable

R

Formula Errors
Formula errors can result from three sources

1) Formula Syntax Errors. These occur if the formulas are not entered as valid expressions. When
you try to solve a formula Math Tablet reports the equation which contains the error and the
specific error

2) Executable Errors. These occur if an error occurs in one of your equation while the formula is
being solved. The might occur if you have a division in a formula and the solver happens to
select a test value which causes the divisor to be zero. Executable errors are ignored while the
formula is being solved but reported using a ! on the dialog box. Many errors of this type will not
affect the solution.

3) In some cases the solver may not be able to solve the equations because they are “singular”.
This can happen even if you provide enough know values and provide good initial guesses.
Singular equations occur when there is not enough information to solve the problem - regardless
of the method used. In this case you must change your formula equations.

(1 eqn)
Tap to change between degrees and
radians. This changes to a ! when an
error occurs. Tap the ! to see the error
message.

63Formula Module
Evaluating a Formula from the Expression Stack
Formulas can be solved directly from the expression stack using the fm function. The fm function has
the following syntax:

fm(“name”,value1,value2...)

For example, to solve the future value formula on the previous page for present value, given future
value = 250, interest = 3, and periods = 12, you would enter:

fm(“Future Val”,250,?,3,12)

To solve the formula with an intial guess of 500, enter

fm(“Future Val”,250,“?500",3,12)

You can graph formula values by replacing the independent value with “x”. To plot the previous
example for present value verses periods enter:

fm(“Future Val”,250,?,3,x)

and select the expression for plotting. This plot will show present value verses periods, where the x
axis is the number of periods.

If the formula is solving for multiple unknowns, use a ? or “?value” for each unknown. fm will return
the values in a matrix

Technical Details
The Formula module uses a nonlinear equation solver to find the unknown values.

When there is only one unknown it uses a method loosely based on the Secant Method. This method
normally requires that you provide an upper and lower bound for the solution. In the formula module
this bound is calculated automatically by performing a couple of iterations based on Newton’s method
starting at the initial guess (or zero if no guess is provided), until a bound on the solution is found.
Overall this method is method is fairly robust. In certain cases, it may not be able to bound the
solution, even if you provide a guess using the “?”. In this case you should use the “solve” function
and explicitly provide an upper and lower bound on the solution.

If the formula contains multiple equations and multiple unknowns, the equation solver uses a method
loosely based on Newton’s method. This method requires a multidimensional search and is not as
robust as the method employed when there is only one unknown. There are several cases in which
the solver may have problems:

1) If the equations are poorly scaled the solver may not be able to find the solution without an initial
guess. In this case you should provide an initial guess using the ”?“ as described above.

2) If you do not provide enough known values the solver may not be able to solve the equations. In
this case it will solve the equations is can, and leave the rest blank.

3) In some cases the solver may not be able to solve the equations because they are “singular”, as
discussed on the Formula Errors section.

64

Key Function Description Module

? Enters the “?” string. This is used to identify the
unknown value in the fm command

Formula Functions

fm(name,var1,var2...) Solves the formula named name for the unknown
value where var = ? or is an initial guess provided
as “?value” where value is the initial guess.
name must be the name of an existing formula.
Name must be a text string
var1, var2... must be known values. These values
must be entered in the same order as the in the
dialog for the formula.
One of the variables should be replaced with a ?.
The function will solve for that value.

Formula

Formula

Formula Module

65Time Value of Money

Dialog Interface

The Time Value of Money (TVM) module lets you solve financial problems involving the time
value of money. The TVM module includes a dialog interface, similar to the Formula module,
and a command line interface.

tvm command with pre-
set parameters

tvm command

Using the TVM function

tvm(pv,fv,pmt,ii,m,yrs)

To solve for an unknown value, use the TVM function and replace the unknown value with a ?. TVM
will return the unknown value. For example tvm(-100,?,1,8,1,10) returns the future value of $100
put into an account for 10 years at 8% interest.

If you store values in predefined variables names, as listed above, you can use the function on the
popup pad to enter the TVM equation quickly. For example if you have already assign:

pv = -100
pmt = 1
ii = 8
m=1
yrs=10

Enter: tvm(pv,?,pmt,ii,m,yrs) which solves for the future value.. The TVM keypad includes keys
which enter the tvm automatically. The ?fv key, for example, enters the tvm function so that it solves
for fv.

The TVM module uses the following parameters. These parameters are stored in variables described
below

pv = present value
fv = future value
pmt = payment per period
ii = % interest (enter 10 for 10%)
m = number of payment periods per year
yrs = number of years

Given any five of these values, TVM will solve for the remaining value using the following formula:

You can solve for these values two different ways

fv = pv(ii/100+1)(m*yrs) - pmt((ii/100+1)(m*yrs)+1)/(ii/100)

66

Using the TVM dialog box

The TVM dialog lets you solve the tvm equations using a dialog form. Enter the known
values into the dialog box. Leave the unknown value blank. Press Solve to solve for
the unknown.

The dialog‘ s option menu can be used to load and save values to and from the
workspace into the dialog’s edit boxes.

Options Menu
Load Values Loads specific variables into the currently selected edit

box.

Load All TVM Values Loads the tvm variables (pv, fv, pmt…) into their respec-
tive edit boxes.

Save All TVM Values Save the values in the edit boxes into their respective
tvm variables on the workspace. If the variables don‘ t
exist they are created.

Reveal TVM Values Copies the values stored in the tvm variables on the
workspace into their respective edit boxes

Create Formula Creates a tvm formula based on the current entries in
the edit boxes. The formula will be created with a ? in
the entry that you last solve for in the dialog box.

Dialog Interface

Options Menu Creates a tvm command
corresponding to the cur-
rent dialog settings and
enters it on the stack

Time Value of Money

67

Key Function Description Module

mdytsec(mmddyyyy) Returns the number of seconds since Jan 1, 1601,
where mmddyyyy is the month, day, year

TVM

The TVM module commands are listed below

TVMndate(mmddyyyy,nd) Returns the date, as mmddyyyy, nd days from the
specified date

TVM

TVM Functions

tvm(pv,fv,pmt,ii,m,yrs) Solves for the unknown parameter in the time value
of money problem. Enter the unknown value as ?

TVM

days(mmddyyyy,
mmddyyyy)

Returns the number of days between two dates

TVMx % y Returns x * (y/100)

Time Value of Money

68Example #1
The following example problems illustrate how you can use Math Tablet to solve a variety of
problems.

Problem: Balancing a checkbook. This example illustrates how Math Tablet’s power can be
put to use in even simple (yet often frustrating) problems.

Solution: Enter the starting balance and then subtract check values using the ANS feature to
maintain a running total.

1. Clear the expression stack by selecting Clear All or
Reset Workspace from the Options Menu

Step-by-Step:

(1)

(2)

(3)

2. Tap on the first expression block and use the key-
pad to enter the balance as shown. Then press
EXE

3. Add the “starting bal” label to the equation by tap-
ping and holding the pen on the lower portion of
the block where you just entered the balance
($563.34). The select “Properties...” and enter the
label.

(1) tap and hold here

(3)

(2)

(continued)

69

The advantage of using Math Tablet for such a simple arithmetic problem is that Math Tablet
remembers each entry you make on the expression stack. If your final balance does not
match your bank statement you can review all the checks that you have entered. If you make
a mistake, simply go back, change the value of the miss-entered check and press EXE. Math
Tablet will automatically recompute your new balance. You can also save your workspace so
that you can recall it next month and continue where you left off.

4. Subtract the first check entry ($12.00) from the current
balance. Use the ANS key to recall the current run-
ning balance. Press EXE when you have completed
the expression.

Short-Cut. Set the Auto ANS feature from the Options
menu and each expression will automatically begin
with ANS

5. Continue subtracting check entries from the run-
ning balance as shown.

6. You can store the final balance in a variable if you
wish so that you can recall it later. In the example
the balance is stored in the variable “b”.

(1) select the variable list

Example #1 (continued)

(4)

(5)

b(2) select NEW

(3) Enter “b” and press OK This
creates a new variable named “b”
and enters it in the expression. If
you want to use this variable again,
tap and select “b” from the list.

70Example #2

Problem: Find the solution to the simultaneous equations

5x+7y = 2
2x -3y = -4

Solution: Write the equations in matrix form Ax = B and solve for x here x = inv(A)*B

Step-by-Step:

1. Clear the expression stack if desired. This is not necessary, you can always leave
your old work on the expression stack in case you want to review it later. Refer to
step 1 of the previous example for instructions on clearing the expression stack.

3. Define the matrix B as shown using the same tech-
nique as in step 2

(1) select the Advanced module

(5) use the “=” to
assign this variable to a
matrix

(6) tap on “{}” to create a matrix. You enter the matrix
by rows. Separate columns by a comma and rows by a
“|”.

You may need to use the arrow keys or “,” to enter the
values shown.

(continued)

2. Define the matrix A

(2) select the variable list

a
(3) select NEW

(4) Enter “a” and press OK This
creates a new variable named “a”

71Example #2 (continued)

Alternately you could compute the solution in one expression as shown below, or you could cre-
ate an augmented matrix and use the “rref” function.

4. Solve for the solution using the
inverse of “a”

(1) tap “inv” to enter the inverse function

(2) tap directly below the “a” in the “a” expression block.
This enters “a” into the active expression. In our case,
we will have “inv(a)”. It is easy to recall a variable that
you have used in a previous expression using this meth-
od.

(3) use the right arrow to move the
cursor to the outside of the paren-
thesis.

(4) enter “b”, recalling it from the previous expression,
by tapping just below the “b” in the previous expression.

a matrix
b matrix

implied multiplication
extract the 3rd column from
the rref results

augmented system
matrix

Alternately you can
tap on and tap
on “a” or “b” from
the variable list

72Example #3

Problem: Find the distance a sphere of radius (r) will sink in water (h) for the following val-
ues of specific density for the sphere: 0.2, 0.4, 0.6

Solution: The equation representing the force balance between the sphere’s weight and its
boyancy is given as:

Solve for the height (h) for different values of specific density (d)

h

(3rh2-h3) -Pi
3

4Pi
3 r3d = 0

Step-by-Step:

1. Clear the expression stack if desired. This is not necessary, you can always leave
your old work on the expression stack incase you want to review it later. Refer to
step 1 of the first example for instructions on clearing the expression stack.

2. Enter the values for the parameters “d” and “r”. These values will be defined using
variables so that their values can be easily modified later.

(4) use the “=” to assign a value to the variable

(continued)

(5) enter 0.2 and press EXE

(6) repeat for “r” and “h”

(1) select the variable list

d
(2) select NEW

(3) Enter “d” and press OK This
creates a new variable named “d”

73

3. Add the “spec. density” and “radius” labels to the
equations by tapping and holding the pen on the
lower portion of the appropriate blocks. Then
select “Properties...” and enter the label.

(1) tap and hold here

(3)

(2)

4. Solve the nonlinear equation for “h” using the “solve” function.

(2) tap on “solve” to enter the solve function

(continued)

(1) switch back to the Advanced module

Example #3 (continued)

74

(4) use the scientific keypad to enter the equa-
tion. This should be entered inside of the
quotes in the solve function. See step (5)
below for a short-cut for entering variables
used in previous expressions.

(3) select the Scientific module so you can enter the equation to
be solved

(5) enter “r” or “d”, recalling them from the previous
expression, by tapping just below the variable in the
previous expressions. This takes practice, so be
patient.

(6) switch back to the Advanced module so you can enter the “h” (in quotes)
as the last parameter of the solve function

Example #3 (continued)

(continued)

(7) tap EXE to evaluate the expression

Alternately you can select
the variable from the vari-
able list

75Example #3 (continued)

You can use the PocketPC keyboard to define variables or enter expressions.

(1) Open the Options Menu

(2) Tap Hide Keypad

(1) Press the UP direction of the cursor pad
on your PocketPC. Press UP again to hide
the keyboard

OR

Useful Alternate Method

(3) Type in all, or some of, the expressions using the key-
board

RETURN will enter an expression

If you enter “r=1" MathTablet will automatically create the
variable “r” for you, so you don’t have to use the method on
the previous page

(continued)

76

5. Re-solve the equation for different values of “d”.

(1) tap on the “d” expression and change the value for
“d”. Tap EXE when the change is complete.

The solution changes to reflect the change in “d”

(2) repeat step (1) for d = 0.6

Example #3 (continued)

77

Problem: Find the area under the
curve for 0>x>10

Solution: The area can be found by integrating the curve. This integral can be written as a sin-
gle, or a double integration.

0

x2

0

10

1 dy dxArea =

y = x2

Example #4

0

10

x2dxArea = or

Step-by-Step for Single Integration:

1. Clear the expression stack if desired. This is not necessary, you can always leave
your old work on the expression stack incase you want to review it later. Refer to
step 1 of the first example for instructions on clearing the expression stack.

(1) switch to the Advanced module so you can enter the
integration function

(2) switch to Scientific module

2. Enter the formula for the integration

(continued)

78

(3) place the cursor between the “” and
enter x2

(4) use the arrow keys to enter the integra-
tion limits 0 and 10. Then press EXE to
evaluate the integration

Step-by-Step for Double Integration:

1. Clear the expression stack if desired. This is not necessary, you can always leave
your old work on the expression stack incase you want to review it later. Refer to
step 1 of the first example for instructions on clearing the expression stack.

2. A double integration requires that you integrate a function that uses the integration
function. The integral would be written like this:

integ(“integ("1",0,x)”,0,10)

Notice that the outside integration function is integrating a function (the value in
quotes) which itself is an integration function. The problem is that this inner integra-
tion function also has the expression to be evaluated placed in quotes. Thus, the
inner set of quotes is embedded inside the outer set of quotes. This is not allowed in
Math Tablet (or in most software). The solution is to replace the inner quoted function
“1" with a string variable.

Example #4 (continued)

(continued)

79

(1) enter “d” by using the variable list. Select “d”
from the list. If it doesn’t exist, select NEW and create
a new “d” variable

(1) switch to the Advanced module so you can enter the
integration function twice.

4. Enter the double integration formula as shown and
press EXE

(2) switch to the Scientific module so you can enter the
integration limits of x2 .

(3) press EXE when the expression is completed

Example #4 (continued)

(2) set it equal to a string by placing the value 1 in
quotes

(3) press EXE

Aletrnate, use the PocketPC keyboard to enter the
expression. See the Alternate Method in Example #3

80Example #5

Problem: Graph the path of a projectile shot with an initial velocity of (p) and an angle of (u)

Solution: The equations governing a projectile are as follows
y = (g/2) (x/w)2 + v(x/w) and x = w t

where y = vertical position
x = horizontal position
g = acceleration of gravity (-32.2 ft/s/s)
t = time
w = initial horizontal velocity
v = initial vertical velocity

If the initial angle is u and the initial velocity is p then

w = p*cos(u)
v = p*sin(u)

Step-by-Step:

1. Clear the expression stack if desired. This is not necessary, you can always leave
your old work on the expression stack incase you want to review it later. Refer to
step 1 of the first example for instructions on clearing the expression stack.

2. Enter the expressions for “velocity” and “angle” as shown

(1) Select NEW from the Variable popup and create a
new variable “velocity” or use the keyboard to enter the
expression

(2) repeat for the “angle” expressions

(continued)

This examples focuses on graphing in Math Tablet. It assumes that you have reviewed
the previous examples and are familiar with the basic operations of Math Tables.

Note: The workspace for this example is provided as part of the software installation. Use
“Load Workspace...” to load in “example5.mtw” if you desire. Then skip to step 5.

81

3. Enter the expressions for w and v. Use the vari-
able dialog to access the variables. You may
also have to switch to the Scientific mode to enter
the “sin” and “cos” functions.

Make sure you switch the angle calculations to
degrees

(1) click here to switch between
degrees and radians

Example #5 (continued)

(continued)

4. Enter the expressions for the position verses “x” as shown. Then
mark the expression to be graphed. Press EXE when completed.

(2) click here and

(3) select a color to mark the
expression to be graphed

(1) tap directly below the “w” or “v” in the previous
expressions to enter them into the currently active
expression.

Alternately you can use the variable dialog

82

5. Switch to the graph screen to see the graph screen

(1) click here to change to the graph screen

Example #5 (continued)

(continued)

6. Change the graphs axis to 0 < x < 20 and 0 < y < 10.

(1) tap and hold the pen on the graph

(2) select Set Axis... from the popup menu

(3) Change the axis values to those shown

(4) Tap OK to apply the values

83

7. The graph now shows the relevant portion of the projectile’s trajectory. Scroll the
expression blocks until you can see the velocity expression. You could also switch
back to the expression stack view and edit the value there. Change the value of
velocity and press EXE. The graph is updated to show the new trajectory.

(1) scroll the expression stack until you can see
the velocity equation

Example #5 (continued)

(continued)

You can experiment with different velocities and angles and see how the trajectory changes.

(3) scroll the expression stack so you can see the
angle expression. Edit the angle expression and
press EXE. The graph is updated

(2) scroll the expression stack so you
can see the velocity expression. Edit
the velocity expression and press
EXE. The graph is updated

84

(1) tap the zoom box to enable full screen graphing

Example #5 (continued)

(2) tap the grid button to bring up the grid dialog
and select auto grid

8. Tap anywhere on the graph to bring up the trace
box. This shows the value of the curve where it
crosses the trace marks

9. Enable full screen graphing with a grid

Alternately you can tap and hold the pen on the
graph and select Grid from the popup menu

85Example #6

Problem: Determine the first “n” prime numbers

Solution: Write a script which searches for prime numbers. To determine if a number is prime,
the script will attempt to divide the candidate by all prime numbers less that that num-
ber. If it can not be evenly divided by any of these primes, the candidate value must
be prime and is added to the prime number list.

Step-by-Step:

1. Clear the expression stack and make sure that you have set the script directory.

2. From the options menu select Format->Scripting. This eliminates the results from the
expression block and allows you to see more expressions on the screen at one time.

This examples focuses on scripting in Math Tablet. It assumes that you have reviewed the
previous examples and are familiar with the basic operations of Math Tables. This exam-
ple also assumes that you are familiar with a computer programming language such as
BASIC, FORTRAN, Pascal or C.

(1) Select Format from the
Options Menu

For reference, the first eight prime numbers are: 2, 3, 5, 7, 11, 13, 17, 19.

(2) Select Script from the
display list

86Example #6 (continued)

3. Switch to the Scripting module and enter the expressions as shown

The screen has been extended in
this figure. You will have to scroll
to see all the expression blocks

Declare the local variables p,t,k,m. x is
also used but it is automatically local

The first parameter passed to the
script is automatically stored in x.
This is used to determine the number
of primes to find, so allocate a matrix
to hold the values.

t is the current candidate prime
k is the number of primes found so far

Loop until we have found x primes

Loop through all the currently known primes
and check to see if any divide evenly into the
current candidate (t)

If a number is not evenly divisible by any of
the known primes, add it to the prime list.

Get the next number for consideration.

Return the matrix that holds the answer

(continued)

4. To test the script, use the Variable Editor from the
Options Menu to set the variable “x” to a value of 5. This
simulates what will happen you call the script from anoth-
er workspace and pass it a parameter.

5. Tap and hold the pen on the first
expression in the script and select
“Run from here...”

(1) tap and hold

(2) select Run from here...

87

Once the script is working properly, you can save the script and use it as a function in another
workspace. This is the real power of scripting.

Example #6 (continued)

7. Save the workspace as “Primes.mtw” in the script directory . The function will require a
single parameter. The parameter is automatically stored in the local variable “x” once the
script runs. In this case the parameter is, x, the number of primes to find.

9. From the Variable and Functions popup, select Primes from the Script view and pass it a
single parameter value as shown.

(1) tap on , then Scripts, finally
tap on Primes from the script list.

(2) Type in the value for the first parame-
ter. Press EXE to run the script.

(3) the primes are stored in the matrix
returned by the script. Tap on the results
to open the matrix in the matrix viewer

8. Clear the workspace and reset the display options to something other than Scripting. This
is so that you can see the results of the script when you run it.

6. Use the Variable Editor to check the value stored in the
variable “p”. It should contain the first 8 prime numbers.
When you run this script from another workspace the value
of “p” will be returned from the script.

88Example #7

Problem: Plot the expression y = sin(x). This simple example illustrates the different ways
you can graph in Math Tablet.

Solution: This graph will be generated three different ways
1) Using Math Tablets automatic function graphing capabilities
2) By generating discrete data points and grahing using the plot function
3) By writing a script to perform the graphing

Step-by-Step:

1. Clear the expression stack (optional).

2. Enter the equation as a function of “x” onto the expression block

3. Enable plotting of this this function by tapping just beneath the R or D. You will see the
plot box as shown below. Select the color for the plot.

4. Show the graph by selecting the graphing screen

This examples assumes that you have reviewed the previous examples and are familiar
with the basic operations of Math Tables.

Method I Built In Plotting

(1) Tap here then
here to enable graphing

(2) Tap here to show the graph

5. Optional: You can change the graph limits by
tapping and holding the pen on the graph and
selecting “Set Axis...” from the pop-up menu.

(continued)

You can rescale the graph by tapping and hold-
ing the pen on the graph and then selecting
“Autoscale” from the popup menu

Tap here switch between full
and half screen graphing

89

Method II Plot Function

6. Create a list of points at which to evaluate the function using the “fill” function as
shown

NOTE: In this example the second
plot is scale by a factor of 2 so that
both plots are visible on the screen

(1) use the “fill” command to create a
array of point from 0 to 6pi radians,
spaced every 0.1 radian

(2) create an array where the first column
contains the values from step (1) and the
second column contains the “sin” of
those values. Note we use vectored
operation to perform this in one expres-
sion.

(3) “plot” the array of points,
select the expression for
graphing. The “plot” com-
mand is part of the graph
module

Method III Plotting Using a Script

7. Enter the script shown to the right

(1) clear the “draw graph” graph buffer
and move to a starting location

(2) loop through all the values and draw a line
from the last location to the new location.

(3) draw the graph using “drawgraph”
and select the expression for graphing

(continued)

Example #7 (continued)

(4) show the graph. The
graph show here is in full
screen. Tap here to switch
between full and half screen

90

8. Run the script. Tap and hold the pen on the
first expression in the script to bring up the
expression popup menu. Select “Run From
Here...” to execute the script. This draws the
series of lines in to the graphic buffer.

9. Show the graph

NOTE: In this example the second
plot is scale by a factor of 3 so that
both plots are visible on the screen

(1) tap and hold the pen here to see the
popup menu

(2) select “Run from here...” to execute the
script and load the plot into the graph buffer

You can trace the graph by tapping once
on the graph. The trace box only shows
known values. You may see a “--” if the
trace line is over a location where an
exact data point is not available

Example #7 (continued)

You can rescale the graph by tapping and holding the pen on the graph and then
selecting “Autoscale” from the popup menu. You can show the grid by selecting
“grid” from the same popup menu.

91Example #7 (continued)

You can rescale the graph by tapping and holding the pen on the graph and then
selecting “Autoscale” from the popup menu. You can show the grid by selecting
“grid” from the same popup menu.

When in full screen mode, you can tap and hold the pen or use the buttons at the
bottom of the graph.

Change the grid and
axis settings

Undo zoom

Autoscale y
or x and y

Zoom in and out

Use Default Axis

Drag a box around an
area to zoom in on
that area

92Example #8
Problem: Create a “Bode” plot showing the gain and phase for a transfer function as a func-

tion of input frequency.

Note: Bode plots are commonly used signal processing and control systems
applications. On a bode plot, the input frequency is plotted on a log scale, the
output gain is plotted a decimals (db), and the output phase shift is plotted in
degrees.

Solution: Write a plotting script function. The input to the script will be the transfer function and
the frequency limits of the plot.

Step-by-Step:

1. Clear the expression stack

2. Enter the script shown

This examples assumes that you have reviewed the previous examples and are familiar
with the basic operations of Math Tables.

3. Save the script as “Bode” by selecting “workspace” then “save as...” from
the options menu.

(1) keep the function from running
unless it is plotting

(2) create the frequency space to
evaluate the transfer function. The
frequencies are created using a “log”
axis

(3) evaluate the transfer function at
every value in the frequency space.
First create the text string:

“V: u= f(s)”
where f(s) is the actual transfer func-
tion. Then evaluate this function
using vectored operation. This evalu-
ates the function at every value in the
frequency space.

(4) compute the gain and phase of
the results. Again, use vectored
operations to perform the analysis on
all of the values at once

The script uses the following parameters:
x = a string containing the transfer function as f(s)
y = log(smallest frequency)
z = log(largest frequency)

(continued)

Important: You must mark this func-
tion for plotting in order for it to plot
when used as a script. If you are
showing only one line, then you must
tap and hold near the D, select
Properties... and select it for
graphing

93Example # 8 (continued)

The Bode function can now be use to create a bode plot for any transfer function. In this
example we will analyze the transfer function

(1) tap here, then select the
Script view and select Bode

Y
U

10
s2+0.1s+10

=

4. Clear the expression stack

5. Execute the Bode function as shown.

6. Check the results by computing the poles of the
transfer function. They should be where the “peak”
in this bode plot occurs.

(3) compute the poles of the system
for comparison

(2) enter the parameters for the
bode function. Also select the
expression for graphing

7. Show the graph. Then tap on the graph to bring
up the trace box and place the cross hairs at the
plot’s peak. The peak occurs at 0.5 on the x axis.
This corresponds to a frequency of 100.5 rad/sec
(because we plotted using log of the frequency)
or 3.16 rad/sec. 3.16 matches the value of the
pole computed in step 6.

8. You can easily see how the parameters in the
transfer function affect the bode plot. For example,
change the 0.1 in the denominator to 1.0 and press
EXE. Math Tablet automatically re-evaluates and
graphs the updated transfer function.

	Cover
	Contents
	Overview
	Getting Help
	Entering and Editing Expressions
	Expression Stack
	Expression Stack Features
	Expression Menu
	RPN Entry
	RPN Entry - Editing and Matrices
	RPN Entry - Variables and String
	Variables
	Variables
	Variable Editor
	Matrices
	Vectored Operations
	Arbitrary Bases
	Options Menu
	Display Formats
	Display Formats
	Format Overrides
	User Functions
	Graphing
	Graphing
	Graphing
	Graphing Menu
	Grids Menu
	Managing Workspaces
	Managing Workspaces
	Documenting Work
	Module Menu
	Modules
	Scientific Module
	Advanced Module
	Advanced Module
	Hexadecimal Module
	Statistics Module
	Statistics Module
	Statistics Module
	Statistics module
	Statistics Module
	Statistics Module
	Conversion Module
	Conversion Module
	Conversion Units Editor
	Conversion Module
	Conversion Module
	User Module
	Scripting Module
	Scripting Module
	Scripting Module
	Scripting Module
	Scripting Module
	Scripting Module
	Graphing Module
	Graphing Module
	Graphing Module Lines
	Graphing Module
	Graphing Module
	Formula Module
	Formula Module
	Formula Module
	Formula Module
	Formula Module
	TVM
	TVM
	TVM
	Example #1 - Check Book Balancing
	Example #1 - Check Book Balancing
	Example #2 - Simultaneous Equations
	Example #2 - Simultaneous Equations
	Example #3 - Nonlinear Equations
	Example #3 - Nonlinear Equations
	Example #3 - Nonlinear Equations
	Example #3 - Nonlinear Equations
	Example #3 - Nonlinear Equations
	Example #4 - Numerical Integration
	Example #4 - Numerical Integration
	Example #4 - Numerical Integration
	Example #5 - Path of a Projectile
	Example #5 - Path of a Projectile
	Example #5 - Path of a Projectile
	Example #5 - Path of a Projectile
	Example #5 - Path of a Projectile
	Example #6 - Prime Numbers Script
	Example #6 - Prime Numbers Script
	Example #6 - Prime Numbers Script
	Example #7 - Plotting
	Example #7 - Plotting
	Example #7 - Plotting
	Example #7 - Plotting
	Example #8 - Bode Plot
	Example #8 - Bode Plot

